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Introduction
This is the first in a series of four articles that, as a group,

attempts to present the fundamental principles of search
theory in layman’s terms (parts I and II appear in this issue;
parts III and IV will appear in the next issue of Response).
Collectively, these articles are intended to ground the reader
in some of the basic principles and terminology of search
theory in an easy-to-understand manner. While these arti-
cles may include some comments on how aspects of search
theory relate to SAR, practical application (such as specific
search procedures based on the theory) is beyond the scope
of this particular series. Before we can begin, however, we
must lay down some ground rules, express some caveats, and
make some disclaimers.

The principles of search theory described in this series of
articles have been established by the scientific community
over the last 50 years, and may be found in various univer-
sity-level textbooks and in scientific journals. Unfortunately,
these sources express the principles of search theory in the
language of higher mathematics, making them all but
unreadable for nonmathematicians. The objective of these
articles is to remove this impediment to understanding the
basic concepts of search theory by translating the mathe-
matics into analogies that are easier to grasp.

Most of the terms used in this series of articles are taken
from either the scientific search theory literature itself or the
U.S. National Search and Rescue Manual. (Where there is
overlap, these two sources are consistent.) Terminology is
important for understanding search theory’s basic principles.
However, many terms used herein have also been used else-
where with different, and sometimes vague or even contra-
dictory, meanings. Therefore, to gain a full appreciation of
the material being presented, the reader may need to set aside
familiar concepts and definitions from other informal dis-
cussions of “search theory.”

Although the author has striven for clarity and simplic-
ity, it should be no surprise if several careful re-readings and
some computation are necessary to grasp the concepts
involved. Search theory is not simple and intuitive; many of
its concepts are difficult to understand after only an initial
exposure. Readers who have been exposed to other treat-
ments of this subject that may not have adhered as strictly
to precise terminology or the underlying scientific research
are likely to have the most difficulty.

Finally, the principles of search theory represented here
are not the opinions (or theories) of this author. The author’s
role is merely that of translator and messenger. Some readers

may see challenges to cherished concepts that have come to
be accepted as “conventional wisdom.” Addressing these sit-
uations would require far more than the available space.
With this in mind, comparisons with other informal descrip-
tions of “search theory” will be deliberately avoided and we
will confine ourselves to what may be obtained from the
scientific literature.

History
The theory of how to search for lost, missing, hidden and

even evasive objects has been a subject of serious scientific
research for more than 50 years. It is a branch of the broader
applied science known as operations research. The term
operations research can be traced to work done during World
War II in support of the war effort. At that time, operations
research was an apt title since the objective was to find the
most efficient and effective ways for conducting military
operations. During the war, one important type of military
operation was, in fact, searching. Searches were conducted
to locate the enemy, and to locate and recover one’s own
lost or missing personnel or those of one’s allies. In more
recent years, the principles of operations research have been
applied to a wide variety of problems that involve making
good decisions in the face of uncertainty about many of the
variables involved. These problems often do not involve
“operations” in the classical sense, and so the term opera-
tions research has become an anachronism to some extent.
However, the original meaning is very close to the subject
we want to discuss—namely, effective, efficient ways of
searching for lost or missing persons.

B.O. Koopman1,2 did the initial work on search theory
during World War II for the U. S. Navy. The Navy’s primary
search objects were enemy ships and submarines, and its
own downed fliers adrift on the ocean. Koopman had to first
develop the general principles of search theory before he
could get down to the specifics of naval problems. These
fundamental principles, which apply to all types of searches
for lost or missing objects, are the principles we will be dis-
cussing.

A  Search  Analogy
To avoid descending too deeply into the pit of mathemat-

ics, we will need to discuss a common, easily visualized
activity that can be used as a model, or analogy, for search-
ing. So, let us pick the mundane activity of sweeping floors
as an analogy for “sweeping” an area in search of a lost or
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missing person. We will use this analogy to describe hypo-
thetical experiments that illustrate the basic principles of
search theory.

Suppose we wish to compare the performance of four dif-
ferent push broom designs. In the first design, the broom
head is one-half meter (50 cm) in width and has fine, closely-
set bristles. In the second design, the broom head is a full
meter in width but the bristles are more coarse and not as
dense as with the first broom. The third broom is two meters
in width with bristles that are even coarser and less dense
than those of the second design. The fourth broom is again
one meter in width, but it is a hybrid design where the cen-
ter 20 cm is identical to the first broom, the 20 cm sections to
the right and left of the center section are identical to the
second broom, and the outboard 20 cm sections at each end
are identical to the third design. Figure 1 shows a schematic
representation of the four different designs. We construct
the brooms and label them as B1, B2, B3, and B4, respec-
tively.

In our first experiment, we want to know how the brooms
compare to one another on a single sweep through a previ-
ously unswept area. To perform this test, we choose a smooth
floor and mark off a square test area measuring 10 meters
on a side. Using sand to simulate dirt on the floor, we cover
the test area lightly, and uniformly, so that the “density” of
sand is 10 grams per square meter (g/m2) of floor surface. We
then push each broom in a straight line from one side of the
test area to the other at a constant speed of 0.5 m/sec (1.8
km/hr or a little over 1 mph), collect the sand that was swept
up, and weigh it.

When B1 is pushed through the test area, it appears to do
a very good job. In fact, it makes a “clean sweep” with a
width of 0.5 meters (the width of the broom head), as illus-
trated in Figure 2. It swept up 50 grams of sand—all the sand
within the 0.5 m x 10 m swept area. Thus we may say that B1
is 100% effective out to a distance of 25 cm either side of
the center of its track, and, because of the physical limita-
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tion of the broom’s width, it is completely ineffective at
greater distances. The maximum lateral (side-to-side) range
of the broom is 0.25 meters from the center of its track.
Finally, since it took 20 seconds to traverse the 10-meter
“test course,” B1 swept up the sand at the average rate of
2.5 grams per second.

Broom B2 is not as thorough as B1, but it makes a swath
twice as wide as illustrated in Figure 3. When the sand from
B2 is weighed, it turns out that it too swept up 50 grams of
sand. As a quick calculation will show, B2 swept up 50% of
the sand in the one-meter-wide swath it made. Further analy-
sis shows that all parts of the broom performed equally, and
both the sand swept up and that left on the floor were uni-
formly distributed across the width of the swath. Thus B2 is
50% effective out to a distance of 0.5 meters on either side of
the center of its track, and completely ineffective beyond that
distance. The maximum lateral range of B2 is 0.5 meters
from the center of its track. Just as with B1, broom B2 swept
up the sand at the average rate of 2.5 grams per second.

Broom B3 is even less thorough than B2, but it makes a
swath twice as wide as B2 and four times as wide as B1, as
shown in Figure 4. Furthermore, it too sweeps up 50 grams
of sand and is found to be uniformly 25% effective over the
two-meter swath it makes. The maximum lateral range is one
meter either side of track and it swept up sand at the same
rate of 2.5 grams per second.

Finally we push B4 through an unswept portion of the test
area. When the sand from B4 is weighed, again we find we
have 50 grams! More detailed analysis shows the center sec-
tion made a clean sweep 20 cm wide, getting 20 grams of
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sand in the process. The two adjacent 20-cm sections swept
up 10 grams of sand each for another 20 grams. This
amounts to 50% of the sand present in the two corresponding
20-cm strips on the floor. Finally, the two outboard 20-cm
sections got only 5 grams of sand each, which means they
were only 25% effective in their respective strips. Figure 5
illustrates the uneven performance of broom B4.

Based on the physical size of B4, the maximum lateral
range of B4 is 0.5 meters from the center of its track. Finally,
just as with the other brooms, B4 swept up the sand at the
average rate of 2.5 grams per second.

If we graph each broom’s performance profile as the pro-
portion of dirt (pod) lying in the broom’s path that is swept
up across the width of the broom head as it moves forward,
we get the graphs shown in Figure 6.

When looking at how the four brooms performed, we see
that all four swept up the same amount of sand at the same
rate under the conditions of our experiment, even if each
broom did so in a different way. How can we characterize
their “equivalent” performance? Note that the amount of
sand swept up by each broom (50g) is exactly the amount
found in a strip 50 cm wide and 10 m long. In fact, it is easy
to show that no matter how far each broom is pushed under
these same conditions, it will sweep up the amount of sand
found in a strip 50 cm wide over the length of the broom’s
movement. That is, we can say the effective sweep width of
each broom when moving at 0.5 m/sec, for the purposes of
computing the amount of sand swept up, is 50 cm (or 0.5
m). If we convert the percentages on the vertical axes of
Figure 6 to decimal values (e.g., 100% = 1.0), the amount

of area “under the curve” (the shaded areas in the figure) is
exactly equal to the effective sweep width in each case. As
we shall see, this is not a mere coincidence. The results of
our experiments and some values of interest that may be
computed from them are shown in the table below. Although
the utility of some of the computed values may not be imme-
diately apparent, their usefulness will become clear in the
subsequent parts of this series.

The results tabulated below are valid only for situations
that are exactly like our experiment. If we change the speed
at which the brooms are pushed, use another surface (e.g.,
the asphalt in the parking lot), or use BBs instead of sand, we
may or may not get the amount of sand (or BBs) found in a
50 cm swath along the tracks. Likewise, the four brooms
may or may not continue to perform “equivalently” with
respect to one another. We need a more general definition of
effective sweep width for it to be useful.

We may define effective sweep width of a broom moving
over the floor at a certain speed as the ratio of the amount of
material swept up per unit time to the product of the density
(amount per unit area) of material covering the floor and the
broom’s rate of travel. This definition is easier to grasp when
written as an equation:

Effective Sweep Width = Amount of Material Swept Up Per Unit Time _____________________________________
[(Amount of Material Per Unit Area)

x (Broom Speed)]

The term amount of material could mean any quantitative
measure of the material, including grams of sand (as in our
experiment), number of objects (such as number of BBs),
volume of a liquid (e.g., for sponge mop evaluation), etc.

Performance Profile for B1 Performance Profile for B2

Performance Profile for B4Performance Profile for B3

Figure 6
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Also note that we are using “effectiveness” to mean “has
the same effect as” according to some agreed-upon mea-
surement (grams of sand swept up, in this case). We could
have used the word “equivalent” in place of the word “effec-
tive” whose usage here is taken directly from the scientific
literature. Readers are invited to substitute “equivalent” for
“effective” if it makes the articles in this series easier to
understand. The important thing to note is that the modifier
“effective,” as used here does not imply a broom is only, or
even highly, effective over a swath having a physical width
equal to the effective sweep width. When we say that all four
brooms have an effective sweep width of 50 cm, we are say-
ing that all four sweep up the amount of sand found on the
floor in a swath 50 cm wide. Only broom B1 does this in a
literal sense. All of the others sweep up the same amount of
sand in one pass, but each removes the sand in its own way
from a wider swath.

Effeecctivee  Seeaarcch  (oor  Sweeeep)  Width  (W)

In his groundbreaking work on search theory, Koopman1

defined the effective search (or sweep) width (often short-
ened to just sweep width) as follows: If a searcher passes
through a swarm of identical stationary objects uniformly
distributed over a large area, then the effective search (or
sweep) width, W, is defined by the equation,

[1] W =
Number of Objects Detected Per Unit Time ___________________________________________

(Number of Objects Per Unit Area) x (Searcher Speed)

where all values are averages over a statistically significant
sampling period. If the performance (or detection) profile
(called a lateral range curve in search theory) is known for
a certain search situation, then the area under the detection
profile equals the sweep width, W, for that situation. This
effective sweep width is also twice the maximum detection
range of an “equivalent”definite range detection profile (one
that is 100% effective out to some definite lateral range
either side of its track and completely ineffective beyond that
range, like broom B1 in our floor-sweeping analogy). Here,
“equivalent” means that the definite range detection profile

and the actual detection profile
both detect, on average, the
same number of objects per unit
time under the same conditions
of object density and searcher
speed.

Some  Sweeeep  Width Examples
To see how Equation [1]

works, suppose we devise an
experiment where a large num-
ber of identical cardboard dum-
mies, having about the same
size, shape and color of a lost
person, are uniformly, but ran-
domly, distributed over a square
test area in measuring one mile
on a side. (A uniform random
distribution is one where the

exact locations of the objects are chosen at random, but the
number of objects per unit of area is about the same through-
out the test area.) Since our test area is in hilly, forested ter-
rain, we use a total of 1920 cardboard dummies for a density
of 1920 objects per square mile. On average, that is 3 objects
per acre or one object for every square patch of ground mea-
suring 120.5 feet on a side. Now suppose we have several
searchers each make a single straight pass through the test
area and find that their average speed is 0.4 miles per hour
with an average detection rate per searcher of 12.8 objects
per hour. Using Equation [1],

W =
12.8 objects per hour _______________________________________ = 0.0167 miles1920 objects per square mile x 0.4 miles per hour

The sweep width is 0.0167 mile or about 88 feet for this 
particular search situation.

Suppose we conduct a similar experiment with several
aircraft, each flying over the same area one time in a straight
line at 100 miles per hour (about 90 knots). Suppose the
average detection rate from the aircraft is 13.3 objects per
minute. That converts to 800 objects per hour. (Note: At 100
mph, each aircraft spent only 36 seconds crossing over our
square test area and detected 8 objects on average.) Using
Equation [1], 

W =
800 objects per hour_______________________________________ = 0.0042 miles1920 objects per square mile x 100 miles per hour

We find the sweep width for this situation is 0.0042 mile
or about 22 feet. Note that despite the very high detection
rate achieved by the aircraft due to their high rate of speed,
the smaller sweep width we have computed indicates the
cardboard dummies are significantly more difficult to detect
from the air than from the ground. In fact, they are about four
times as hard to detect from the air as from the ground. In
some environments, detection from the air is so difficult that
air search is considered ineffective. Nevertheless, since an
aircraft can search an area several times in less time than it
takes for a ground team to search the same area once, some-
times the handicap of a small sweep width may be more than

Broom B1 Broom B2 Broom B3 Broom B4
Broom Width 0.5 m 1.0 m 2.0 m 1.0 m
Maximum Lateral Range 0.25 m 0.5 m 1.0 m 0.5 m
Bristle Density Demse Less dense Much less dense Composite
Broom Effectiveness (avg.) 100% 50% 25% 50%
Sand “Density” 10 g/m2 10 g/m2 10 g/m2 10 g/m2

Sweeping Speed 0.5 m/sec 0.5 m/sec 0.5 m/sec 0.5 m/sec
Time 20 sec 20 sec 20 sec 20 sec
Distance Moved 10 m 10 m 10 m 10 m
Area Swept 0.5 m x 10 m 1.0 m x 10 m 2.0 m x 10 m 1.0 m x 10 m
Amount of Sand Swept Up 50 g 50 g 50 g 50 g
Average Sand Removal Rate 2.5 g/sec 2.5 g/sec 2.5 g/sec 2.5 g/sec
Effective Sweep Width 0.5 m 0.5 m 0.5 m 0.5 m
Area Effectively Swept 0.5 m x 10 m 0.5 m x 10 m 0.5 m x 10 m 0.5 m x 10 m
Effective Sweep Rate 0.25 m2/sec 0.25 m2/sec 0.25 m2/sec 0.25 m2/sec
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offset. (We will revisit this issue in Part II when we discuss
something called coverage.) For many environments, it is
not at all unusual for objects the size of a person to be much,
much harder to detect from a light fixed wing aircraft flying
a several hundred feet above the ground at 100 miles per
hour than from the ground while walking at less than one-
half mile per hour. On the other hand, sweep widths for air-
craft operating over relatively flat, open terrain can be
significantly larger than those for searchers on the ground
when both are looking for the same object.

Note:  The “experiments” and figures described above
are completely hypothetical and are presented only for con-
ceptual illustration. There is a great deal more involved in
designing and conducting scientifically rigorous experi-
ments, and collecting and analyzing the data from them, than
the above paragraphs convey.

Importance  of  Sweeeep  Width
As the reader may have already discerned, sweep width

is a basic, objective, quantitative measure of detectability.
Larger sweep widths are associated with situations where
detection is easier while smaller sweep widths imply detec-
tion is more difficult. It should be clear that it must be impor-
tant to know, in some quantitative way, how detectable the
search object is in a particular search situation if we are to
reliably estimate the probability of detecting that object with
a given amount of searching.

The sweep width concept is extremely robust. It has stood
the test of time and a great deal of scientific scrutiny. An
important property of sweep width is its relative indepen-
dence from the details of the detection processes themselves,
such as the exact shape of the detection profile, or
exactly how the searcher’s eyes and brain func-
tion to see and recognize the search object. Sweep
width is simply a measure (or estimate) of the
average detection potential of a single specific
“resource” (e.g., a person on the ground, an air-
craft or vessel and its crew, etc.) while seeking a
particular search object in a particular environ-
ment. Thus, Equation [1] may be applied to any
sensor looking for any object under any set of
conditions. For visual search, note that Equation
[1] will work for either relatively unobstructed
views, such as searches conducted from aircraft
over the ocean, or situations where obstructions
are common, such as searching in or over forests.
That is, Equation [1] may be applied to any SAR
search situation, although it makes more sense to apply it to
situations where conditions are roughly uniform. Where
there is a significant difference in environmental conditions
(e.g., open fields vs. forests), sensor/searcher performance
(e.g., experienced vs. inexperienced searchers) and/or search
objects (e.g., a person vs. “clues” like footprints or discarded
objects), there will normally be a significant difference in
effective sweep width as well.

Factors  Affecting Sweeeep  Width
There are three classes of factors that affect detection and

hence the sweep width.
1. The search object’s characteristics affecting detection.

Examples include such things as the object’s size, color,
contrast with surroundings, etc. One would not expect the
sweep width for a discarded candy wrapper or a footprint
in the summer forest to be nearly as large as that of a per-
son wearing bright clothing. 

2. The capabilities of the sensor(s) in use. Examples include
sensor type (e.g., unaided human eye, infrared devices,
air-scent dog, etc.), searcher/operator abilities (e.g., train-
ing, experience, fatigue), search platform (searcher on
foot, all-terrain vehicle, boat, aircraft, etc.), speed of the
searcher’s movement in relation to the search object, etc. 

3. The environmental conditions at the place and time of the
search. Examples include terrain, amount of ground cover,
lighting conditions (e.g., sunny vs. overcast, deep forest
vs. open meadow), visibility/weather (e.g., clear, foggy,
rainy), etc. 

All of these factors may interact with one another in com-
plex ways. This leads to the single most important difficulty
of the sweep width concept—there is no simple, easy way
to directly measure effective sweep width in the field for each
search situation. However, it can be estimated from factors
that may be measured, or at least observed, directly. With the
help of data from some scientifically designed and executed
experiments covering a reasonably broad range of search sit-
uations, effective sweep width values can be estimated
quickly and reliably based on the sensor(s) in use, the char-

acteristics of the search object(s) and the environ-
mental conditions in the search area(s). Note that
although the maximum detection range is both
measurable and affected by many of the same fac-
tors, this value alone does not reliably indicate
how much detection will take place, whereas the
effective sweep width does. Even when we know
the maximum detection range, all we can say with
certainty is that the sweep width can never be
greater than twice its value.

The  Coast  Guard’s  Experience
For more than 20 years, the U.S. Coast Guard

has been conducting scientific experiments and
analyses to develop tables of validated effective
sweep width values for use in marine SAR. These

experiments first identify the significant factors affecting
detection and then go on to quantify the effects of the iden-
tified factors. It does not appear that any experiments of a
similar sophistication or scope have been undertaken for the
benefit of inland SAR. Coast Guard experience has shown
that relatively few (but expensive, unfortunately) experi-
ments, covering a representative cross-section of conditions
typically encountered in SAR missions, produces useful
results across a wide spectrum of SAR situations.
Consequently, the National SAR Manual3 contains extensive

The concept
of effective

sweep width
is extremely

powerful and
lies at the

very core of
search theory.
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tables of sweep width values for a wide range of conditions
encountered in marine SAR. From these, good estimates of
effective sweep widths for marine situations other than those
directly tabulated may be obtained quickly and easily by
using correction factors, interpolation, limited extrapola-
tion, etc. Maritime search planners the world over use these
tables to good effect every day. Coast Guard experience has
also shown the need for a significant level of continuing
experimentation to keep pace with changing technology—
both that which a distressed person might use and that which
becomes available to the searchers.

Koopman’s  Model  of  Visual  Detection
We will conclude our discussions with a brief look at a

mathematical model of visual detection developed by
Koopman during his initial work on search theory. This
model is important for both historical reasons and because
it is still used today in a SAR context.

Koopman had no empirical data, such as the results of
controlled experiments, from which he could develop detec-
tion profiles. Since the primary objective of his research
involved detection of enemy ships and surfaced submarines
from patrol aircraft flying over open ocean, he analyzed the
geometry of this situation and made two reasonable assump-
tions. The first assumption was that an observer in an aircraft
first detects a vessel by sighting its wake. The second
assumption was that the instantaneous (one glimpse) proba-
bility of detecting the vessel is proportional to the solid angle
(like that at the apex of a pyramid) subtended at the
observer’s eye by the wake’s area. Working through the
geometry and associated mathematics, this is approximately
equivalent to saying the instantaneous detection probability
is inversely proportional to the cube of the distance from
the observer to the ship’s wake. Hence, this model came to
be called the inverse cube law of visual detection.
Continuing to develop this model, Koopman found that it
produced a particular type of bell-shaped detection profile,
shown in Figure 7.

Unfortunately, we will not be able to fully appreciate the
importance of Koopman’s model until near the end of Part II.
However, it seemed most appropriate to introduce its detec-
tion profile here first.

Sweeeep  Width and  Speeeed
There is one important observation, however, that

Koopman’s notion of “glimpses” will help us understand
before we move on from effective sweep width to the next
topic. For visual search, the sweep width decreases as the
speed of the searcher in relation to the search object
increases. Using Koopman’s approach, we can see at least
one reason why this should be true. A searcher “glimpse
rate,” or number of glimpses per minute, is roughly constant.
As his speed increases, the searcher has to scan more area
with the same number of glimpses. This gives him less time
to focus on each small patch of ground and decide whether
the search object is there. Similarly, he has fewer opportuni-
ties to catch a glimpse of, and detect, a search object as he
passes by. As Hill4 and many others have stated, seeing and
detecting are not the same thing. Koopman1,2 observed, “. .
. the act of [the search object’s] recognition is essential: what
the searcher perceives is a set of sensory impressions which
he must interpret before he knows what is causing them.
When the object is in plain view, its recognition is so imme-
diate that this may hardly seem to take place; but in the typ-
ical problems of search, recognition can easily be a matter
of real difficulty.” In his presentation, Hill4 dramatically
demonstrated, with photographic slides taken in a wooded
area, just how difficult recognition can be. It takes a small,
but finite, amount of time for a searcher to move his gaze to
a new patch of ground (or water), focus on it, give himself
enough time to recognize objects of interest if any are pre-
sent, decide whether there are any such objects present, and
move his gaze to a new patch. The faster a searcher moves,
the more likely it becomes that he will fail to detect objects
of interest even when they are present, and the more likely

6
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it becomes that he will fail to even look at some patches of
ground.

Increased speed can also produce other effects. To give an
extreme example, consider how many objects a searcher
would detect while running through a wooded test area hav-
ing no trails to follow. The running searcher would have vir-
tually all of his attention devoted to the problems of
navigating the terrain at such a high speed. By concentrat-
ing on obstacle avoidance, as he must, such a searcher is
unlikely to detect any but the closest and most obvious
objects, making the number of detections per unit time quite
low in comparison to his speed. In terms of Equation [1],
the number of objects detected per unit time in the numerator
would not be large enough to offset the large searcher speed
in the denominator. If, as in paragraph 5, a searcher moving
at 0.4 miles per hour detects 12.8 objects per hour, then a
searcher running at 4 miles per hour would have to detect
128 objects per hour in order to maintain a computed sweep
width of 88 feet.

The generalization that increased speed results in
decreased sweep width does not necessarily hold when com-
paring two very different resources. For example, the advan-
tages of a “bird’s-eye view” from an aircraft will often more
than compensate for the detrimental effects of its high speed
as compared to that of searchers on the ground. If the sweep
width from the air is equal to or greater than that for
searchers on the ground, the aircraft’s speed becomes a huge
asset instead of a liability because it can do much more
searching in much less time than ground teams can.
Nevertheless, increasing the aircraft’s speed (e.g., doubling it
from 100 knots to 200 knots) will have a detrimental effect
on sweep width. Searching aircraft fly low and slow for the
very good reason that it makes the search object below more
detectable than it would be from higher altitudes and/or
speeds.

Many important factors, such as search platform capabil-
ities, nature of the terrain, searcher safety and fatigue, go into
determining what search speed is appropriate. As a result,
sweep width experiments are normally conducted using
search speeds that seem to provide the best balance among
the competing demands. Furthermore, the sweep widths so
obtained are always used with their corresponding search
speeds for both planning and operations. We will continue
the practice of treating sweep width and search speed as an
inseparable pair of values throughout the remainder of this
series. In fact, we will combine these two quantities in Parts
III and IV into a single variable called the effective search (or
sweep) rate.

Coming  Attractions
In the next article, we will see how the effective sweep

width concept allows us to develop an objective relation-

ship among the amount of effort expended in searching an
area , the size of the area, and the probability of detecting
(POD) the search object if it is present in the searched area.
(In fact, objective POD estimates are just not possible with-
out a basic measure of detectability, i.e., the effective sweep
width.) In the third article we will look at means for con-
structing probability density distributions that quantify the
search manager’s estimate of where the search object is more
likely and less likely to be. This will allow the probability
of the object being contained within a defined geographic
area (POA or POC according to individual preference) to be
computed. In the fourth and final article we will see how
the objective relationship among POD, effort and area can
be applied to probability density distributions to produce
optimal search plans that maximize the probability of suc-
cess (POS) obtainable with the effort available.

Food for thought until next time: When we look at how
our four broom designs perform when they are used to sweep
four identical test areas, will they all still produce the same
results for the same effort? Do not jump to any conclusions!
The answer(s) may come as a surprise!
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It should be easy to see that the amount of sand swept up
depends on the amount of effort expended. The farther a
broom moves, the greater the amount of sand we expect to
sweep up. Effort has units of length (e.g., meters). Note that
this is different from the more usual purely time-based defi-
nition used in the work place (i.e., labor hours), although
the time-based definition is a component of search theory’s
effort.

Area  Effectively  Swept
Just knowing how far a broom moved (i.e., the effort) in

an experiment will not tell us how much floor sweeping was
effectively done. However, if we also know the effective
sweep width of the broom, then we can compute the amount
of area that was effectively swept.  This computation simply
requires multiplying the effective sweep width by the effort 
(i.e., the distance the broom moved).
[4] Area Effectively Swept = Effort x (Effective Sweep Width). 

Provided no portions of the area are swept more than
once, we can quickly compute the amount of sand swept up
by multiplying the area effectively swept by the density (in
grams per square meter) of sand on the floor. We will
momentarily defer the important issues raised when the
broom passes over parts of the floor more than once.

Effective  Coverage  
Effective coverage (usually shortened to just coverage)

is defined as the ratio of the amount of area effectively swept
to the actual physical size of the area where the sweeping
was done. 

[5] Coverage = Area Effectively Swept _________________________
Physical Size of the Area 

Where Sweeping was Done

Thus,  if the area effectively swept, computed using
Equation [4] above, is one half the actual physical area
involved, then the coverage is said to be 0.5. One can think
of coverage as a measure of how “thoroughly” the floor has
been swept. Note that for a given sweep width, the coverage
is proportional to the area effectively swept, which in turn is
proportional to the level of effort. How much sand is swept
up, as we shall see, may also depend on the broom perfor-
mance profile, or it may not, depending on the coverage
and/or exactly how the broom is used. Coverage is the ratio
of two areas and therefore has no units.

Principles  of  Search  Theory
Part  II:  Effort,  Coverage,  and  POD

by J. R. Frost

Sweeping  Areas
In Part I: Detection we established the concept of effective

sweep width (usually shortened to just sweep width) by using
floor sweeping as an analogy for searching. We then found
that sweep width, W, is used in search theory as a standard
method for expressing detectability. In this article, we will
first develop a definition for effort. Combining this definition
with sweep width, we will define the amount of area effec-
tively swept (called effective search effort in a SAR context).
Next, we will see how to relate the area effectively swept to
the actual physical size of the area being swept using a value
called effective coverage. Effective coverage will represent
the degree of “thoroughness“ with which an area has been
swept. We will then see how effective coverage may be used
to determine what fraction of the material present in the area
is swept up. In our floor sweeping analogy, this fraction will
be represented as the percentage of dirt (pod) originally pre-
sent that is swept up, although we are using sand as a sub-
stitute for dirt in our experiments. Finally, we will provide an
example showing how these concepts are used to estimate
Probability of Detection (POD). An underlying assumption
in all that follows is that effort is applied as uniformly as pos-
sible over the entire test area and is not confined to a single,
small, portion. We also define a broom’s track as the line fol-
lowed by the center of the broom head and the track spac-
ing in a pattern of parallel sweeps as the distance between
adjacent tracks.

Effort

In the floor sweeping experiments described in Part I, we
covered a 10 meter square area uniformly with sand at a
“density” of 10 grams per square meter. Then, we pushed
each of four different brooms (B1, B2, B3 and B4), across
the width of the square, recorded how much sand each swept
up and analyzed each broom’s performance profile. Pushing
a broom a distance of 10 meters represents a certain amount
of effort. In fact, effort is defined as the distance traversed
within the area of interest. Effort may be equivalently
defined as the amount of time spent in the area of interest
times the average speed of the broom. If multiple brooms are
used simultaneously, then the effort will be multiplied
accordingly.

[2] Effort = Distance Traversed in the Area,
or, equivalently,

[3] Effort = (Time in the Area) x (Average Speed).

© Copyright 2000 J.R. Frost 
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Parallel  Sweeps
Most people given the job of sweeping a square area with

a push broom would elect to do so using a pattern of paral-
lel sweeps. When the sand is uniformly distributed over an
open floor’s area, this technique is the most efficient method.
We will now describe a series of experiments using parallel
sweeps with each of the brooms to see what we can learn.
But first let us re-state the initial conditions: We have a
square test area measuring 10 meters on a side for a total area
of 100 square meters, and the sand is distributed uniformly
over the area at a “density” of 10 grams per square meter
making the total amount of sand in the test area 1,000 grams
(1 kilogram).

Parallel  Sweeps  with  Broom  B1
Recall from Part I that B1 is 100% effective over a width

of 50 cm and completely ineffective outside that width.
Suppose we expend an effort of 50 m (or 100 seconds at 0.5
m/s) inside the test area. To satisfy our assumption of uni-
formly applying the effort to the degree possible, we divide
the area into five strips, each two meters wide. We then push
B1 down the center of each strip, as shown in Figure 8. (Note
that when sweeping the rightmost and leftmost strips, the
center of the broom will follow a track one meter from the
nearest edge of the test area, while the spacing between
broom tracks will be two meters. This is the standard method
used in parallel track searches of rectangular areas.) 

The physical area swept and the area effectively swept are
both 25 square meters (50 m times 0.5 m), making the cov-
erage 0.25 (25 m2/100 m2). The amount of sand swept up is
250 grams or 25% of the total in the area. Hence the frac-
tion of the sand swept up is exactly equal to the coverage in
this case. It is easy to see that if we divide identical “virgin”
test areas into more strips and push B1 down the center of
each, the equality between the fraction of sand swept up and
coverage will continue until we reach a coverage of 1.0. At
that point, we will have divided the area into 20 strips having
a width of 0.5 m each. After sweeping each of these strips,
broom B1 will have swept up all of the sand (100%). Any

further sweeping, i.e., any coverage greater than 1.0, would
be pointless since it would not improve the results.

Before proceeding further, we need to make a few obser-
vations. Even though our first experiment involved five
equally spaced parallel broom tracks, we could have
achieved the same result using any non-overlapping sweeps
as long as a total distance of 50 m is swept. Provided the
broom remains within the test area and the sweeps do not
overlap, the spacing between the broom tracks is irrelevant.
The point to remember is that the fraction of sand swept up
depends on coverage, not on track spacing. Also observe that
we have the advantages of an open floor free of obstructions,
precise navigation, and the ability to see exactly where we’ve
already swept. Presently, we will investigate more realistic
situations where we do not have these advantages.

Parallel  Sweeps  with  Broom  B2

Recall that broom B2 was uniformly 50% effective across
a width of one meter and completely ineffective outside that
width. Pushing B2 down the centers of each of five strips
two meters in width produces the effect illustrated in
Figure 9. 

Although B2 passed over 50 square meters of physical
floor area, the area effectively swept will still be 25 square
meters because the effective sweep width is still 0.5 m and the
effort is still 50 m. Hence, we will again have a coverage of
0.25 and we will again collect 250 grams of sand or 25% of
the total in the area. It is easy to see that if we divide identi-
cal “virgin” test areas into more strips and push B2 down
the center of each, this equality between the fraction of the
sand swept up and the coverage will continue until we have
divided the area into 10 strips, each one meter wide. At this
point, broom B2 will pass over every point in the test area
once but will achieve a coverage of only 0.5. To reach a cov-
erage of 1.0 using parallel sweeps, we must move B2 a total
distance of 200 meters along tracks that are only 50 cm apart,
just as we did with B1. Because B2 is twice as wide as B1,
it will pass over each part of the test area twice at this cov-
erage. Since B2 removes 50% of the remaining sand with

Figure 8

Figure 9

B1, C=0.25

B2, C=0.251 m
➷

2 m
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each pass, it will remove 75% of the sand from the test area
at a coverage of 1.0.

We should pause again to make a few observations. The
most striking of these is the difference in performance
between brooms B1 and B2 at higher coverages. While both
brooms achieve identical results for coverages at or below
0.5, the performance of B2 at higher coverages falls farther
and farther behind that of B1 up to a coverage of 1.0. At that
point, B1’s performance reaches the maximum possible
value (100%), and since it can go no higher, broom B2
begins to catch up. At a coverage of 2.0 using a standard par-
allel track search pattern, B2 will sweep over the test area
four times and will sweep up 93.75% of the sand in the area.
For ease of comparison, the percentage of dirt swept up by
each broom versus coverage will be graphed after we have
examined brooms B3 and B4.

Parallel  Sweeps  with  Broom  B3
Recall that broom B3 is two meters wide but only 25%

effective over that width. When it is pushed down the centers
of five “virgin” two-meter strips, a coverage of 0.25 is again
achieved and 25% of the sand present in the area is swept up.
However, B3 has also passed over the entire area of 100
square meters once, as illustrated in Figure 10.

At a coverage of 0.5, it will pass over the area twice and
will sweep up 43.75% of the sand. At a coverage of 1.0,
about 68% of the sand will be swept up.

Parallel  Sweeps  with  Broom  B4
Recall the hybrid design and “stair-step”performance pro-

file of broom B4 over its one-meter width. Figure 11 illus-
trates sweeping the area with B4 using a coverage of 0.25.

Like B1 and B2, the fraction of sand swept up by B4
equals the coverage up to a coverage of 0.5. However, at
higher coverages, broom B4 outperforms B2, but does not
do as well as broom B1. At a coverage of 1.0, broom B4
sweeps up about 80% of the sand in the test area.

Graphing  the  Experimental  Results
Figure 12 graphs each broom’s performance when used to

sweep the test area with equally spaced parallel sweeps. On
this graph, the percentage of dirt (pod) swept up is plotted on
the vertical axis against coverage on the horizontal axis.

The significance of the fifth, and lowest, curve is dis-
cussed below.

Randomizing  Influences

Random variations are a fact of life in our activities and in
our environment. Failure to account for them is frequently
the reason mathematically precise solutions that look good
on paper do not always work in the real world. There could
be several sources for “randomness” in a real floor sweep-
ing problem. There might be obstructions in the area that pre-
vent the sweepers from moving along straight, equally
spaced, parallel tracks or the sweepers might not choose to
use such tracks for some reason even if they were possible.
The density of the sand might not be uniformly distributed
over the area, but randomly piled up in mounds of higher
density in some places and lower density in other places.
This would make it difficult to predict the amount of sand
being swept up, particularly at lower coverages or for non-
uniform detection profiles like that of broom B4. Finally,
we could be trying to sweep up randomly scurrying ants
instead of stationary grains of sand. Even if a swath was
swept clean, some of the ants might run into it after the
broom had passed. Although we cannot predict with cer-
tainty the fraction of sand (or ants) that will be swept up in
any single floor-sweeping problem having random variations
in one or more of its elements, it is possible to determine
what the average results of many such sweepings would be.
The graph of that answer is the curve labeled “Random
Sweeping” in Figure 12.

Note that the lower, broader, and flatter the broom per-
formance profile, the closer its performance over the area
will be to the “random sweeping” curve, even though per-
fectly straight, parallel tracks are still being used. Although

Figure 10

B3, C=0.25

Figure 11

B4, C=0.25

2m

2m

© Copyright 2000 J.R. Frost 



not obvious, using any of the brooms in a random fashion,
rather than parallel sweeps, or having other significant ran-
dom influences present, would place their average perfor-
mances on the “random sweeping” curve. Therefore, when it
is feasible to use straight, equally spaced, parallel tracks uni-
formly distributed over an area free of significant random
variations, this tactic will make more efficient use of the
available effort than “random” sweeping. How often such
favorable conditions occur in real-world situations is another
question.

We now have the answer to the question posed at the end
of Part I, but the answer is not a simple one. When used in a
pattern of perfectly parallel, equally spaced tracks to sweep a
floor uniformly covered with sand, the four different broom
designs perform equivalently at low coverages (less than or
equal to 0.25) and very high coverages (greater than 4 where
even the curve for B3 surpasses 99%). However, they do
not perform equivalently at intermediate coverages when
sweeping areas. The differences among the brooms in this
intermediate, and most useful, range are significant.
Alternatively, when the brooms are used in a somewhat “ran-
dom” fashion or when significant randomizing influences
are present, all four broom designs perform equivalently at
all coverages, as shown by the so-called “random sweeping”
curve.

Multiple  Loow-Cooveeraagee Sweepings  vs.  
Single  High-Cooveeraagee Sweepings

One might ask whether there is any advantage to sweep-
ing the floor twice at a coverage of 0.5 as opposed to once
at a coverage of 1.0 since both require the same effort. When

using broom B2, it should be easy to see that it doesn’t mat-
ter whether the floor is swept once at a coverage of 1.0 (track
spacing = 0.5 m) or twice at a coverage of 0.5 (track spac-
ing = 1.0 m). The broom is uniformly effective across its
width. After one pass, the sand left behind is uniformly dis-
tributed over the swept area. Whether the area between two
adjacent tracks is immediately swept over a second time as
the broom moves down the adjacent track, or later as the
result of a second complete sweeping of the area, makes no
difference. Either technique will sweep up 75% of the sand.
A similar argument may be applied to B3. However, let us
examine the situations created by brooms B1 and B4. Unlike
B2 and B3, which left the remaining sand uniformly distrib-
uted over the test area, broom B1 left half of the test area
cleanly swept in the form of 10 “bare” 50 cm corridors sep-
arated by 10 untouched corridors also 50 cm wide. Only by a
very precise placement of the second set of sweeps will we
get the same results from two sweepings at a coverage of
0.5 that we got with one sweeping at a coverage of 1.0. Even
a small error in the placement of broom B1 will produce a
substantial decline in the amount of sand obtained from the
second sweeping. Broom B4 presents a similar problem.

In general, two sweepings of an area at one-half of a
given coverage can produce results no better than one
sweeping at the given coverage, and the two low-coverage
sweepings could easily do worse. Because B1 and B4 are
very effective close to their tracks, accurate broom place-
ment, relative to the first set of tracks, is necessary if the
results of two sweepings are to match those of expending the
same total effort in a single sweeping. Therefore, the out-
come of two low-coverage sweepings is not as predictable as
with B2 and B3 since the results of two sweepings are so

11

Figure 12

Percentage of Dirt (pod) vs. Coverage
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sensitive to where the second set of tracks is placed with
respect to the first set. However, if the placement of the sec-
ond set of parallel sweeps is independent, i.e., randomly off-
set, from the first set, then on average, over many sweepings,
we will get substantially less sand for two sweepings at a
coverage of 0.5 than for one sweeping at a coverage of 1.0.
Situations often arise where close coordination between
sweepings is not possible. For example, when we think of
searching instead of sweeping floors, it seems unlikely that
two independent parallel track searches of an area using 5-
person teams would exactly replicate the tracks of a single
10-person team.

Returning  to  Searching
Let us restate Equations [2]–[5] in the terminology of

searching and search theory. Effort, z, is defined as the dis-
tance traversed by the searcher(s) while operating in the area
being searched. Stated as a formula,

[6] z = L,

where L is the distance traveled by the searchers in the
searched area. Note that this is the distance traveled along the
searcher’s actual path, not the lengths of the beelines con-
necting the searcher’s position on one side of the searched
area with his position when he reaches the other side.
Equivalently,

[7] z = v x t,

where v is the average speed of the searcher(s) while
searching and t is the time spent searching. The area effec-
tively searched is called the effective search effort (or just
search effort for short), Z, and is defined as the product of
effective sweep width and effort. That is, 

[8] Z = W x L = W x z = W x v x t,

where W is the effective sweep width. (Note that effort has
units of length while search effort has units of area.) Finally,
coverage, C, is defined as the ratio of the effective search
effort to the area being searched. Expressed as an equation,

[9] C = Z,
A

where A is the physical size of the area being searched.
If multiple searchers or several similar resources are used
simultaneously in an area, then the effort is multiplied
accordingly, causing corresponding increases in search effort
and coverage. (However, simultaneous searching by dis-
similar resources, such as searchers on the ground and in an
aircraft, should normally be treated as separate, independent
searches.) For the very special case of perfectly straight,
equally spaced, parallel tracks uniformly distributed over a
rectangular area, we may take a short cut and compute cov-
erage as the ratio of sweep width to track spacing (S), i.e.,

[10] C = W.
S

POD  vs.  Coverage
When we try to transfer the findings of the parallel track

experiments described above to searching, we find that
searching is rarely, in fact almost never, as clean and straight-
forward a proposition as sweeping floors. There are always
all sorts of random influences on the searching and detec-
tion processes that are beyond the searchers’ (or anyone
else’s) control. This is sometimes true even when searching
for objects adrift on the open ocean, and probably even more
frequently true for searches conducted on or over the ground.
For this reason, a search model that accounts for random
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Figure 13

POD vs. Coverage
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variations is probably a very good unbiased estimator of
actual organized search performance in the field.

The mathematical derivation of the so-called “random
search formula” (also called the exponential detection func-
tion) is beyond the scope of this article, so we will simply
state, without proof, the formula derived by Koopman:1,2

[11] POD = 1 - e-c

In this formula, e is the base of the natural logarithms
(~=2.71828) and C is the coverage. Koopman’s definition of
“random” in this context contains the restriction that the
effort be uniformly distributed over the area being searched.
In that sense, the searchers’ movements cannot be com-
pletely random as they must fill the area to the same degree
everywhere, like a liquid fills an open bucket, in order to
satisfy Koopman’s restriction.

The exponential detection function has some interesting
properties. Unlike perfect parallel track searching, the shape
of the detection profile does not affect the POD computed by
Equation [11], and perfectly straight, equally spaced, parallel
tracks are not required. In other words, all detection profiles
perform equally at equal coverages whenever significant
random variations in the search parameters are present—as
long as the effort is uniformly spread over the area. The
exponential detection function also has the property that
splitting a given amount of effort in two and performing two
successive searches of an area always produces the same
cumulative POD as using all the effort to do a single search
of the area.

Figure 13 shows the graphs of POD vs. Coverage for
three detection profiles that often arise in search theory.

The upper “curve” that is linear from the origin to
(1,100%) is the POD graph for a definite range detection
profile (like the performance profile of B1 shown in Part I)
following perfectly straight equally spaced parallel tracks.
The middle curve is based on Koopman’s1,2 mathematical
model of how warships underway are detected visually from
the air—the so-called inverse cube law whose detection pro-
file was shown near the end of Part I. This middle curve is
the same one that appears in Figure 5-19 on page 5-29 of
the U.S. National SAR Manual (1991)3 for estimating the
POD of any single search. It is based on using Koopman’s
inverse cube law of detection along perfectly straight equally
spaced parallel tracks. The lower curve is the graph of the
exponential detection function. As Koopman1,2 observed,

“At one extreme is the definite range law, at the
other the case of random search. All actual situ-
ations can be regarded as leading to intermediate
curves, those lying in the shaded region. The
inverse cube law is close to a middle case, a
circumstance which indicates its frequent empir-
ical use, even in cases where the special assump-
tions upon which its derivation was based are
largely rejected.”

In other words, provided there is no systematic error or
bias affecting the searches, the average results of any search
technique over many searches must fall on or between the

upper and lower curves shown in Figure 13. Under ideal
search conditions where sweep widths are relatively large
and the parallel tracks are accurately navigated, Coast Guard
experiments show the middle curve in Figure 13 predicts
POD remarkably well for experimentally determined sweep
widths, even those of drifting objects that leave no wake.
However, as search conditions deteriorate, not only do sweep
widths decline, the actual detection profiles become much
lower and flatter than that of Koopman’s inverse cube law.
As with our broom experiments, this change in the detec-
tion profiles drives POD values toward the exponential
detection function, even for perfect parallel tracks. In other
words, a coverage 1.0 parallel sweep search for a boat under
ideal conditions would have a POD of about 78% while a
coverage 1.0 search for the same boat under poor or diffi-
cult search conditions would not only require more effort
(due to the reduction in sweep width), it would have a POD
of only about 63%.

The  Case  for  Exponential  Detection

Many would argue that most actual search results fall
closest to those predicted by the exponential detection func-
tion in Figure 13. Searching is a difficult, demanding, and
sometimes dangerous business. Under actual operational
conditions, no searcher or sensor package can perform with
mathematical precision free from random variations, nor can
any search pattern be followed with absolute precision, nor is
the search environment perfectly uniform. Even though GPS
now makes it possible to come very close to perfect naviga-
tion, statistical modeling shows that it takes surprisingly lit-
tle variation from perfectly straight equally spaced parallel
tracks for expected POD values to be close to the exponen-
tial detection function. Furthermore, the smaller the sweep
width, i.e., the harder detection becomes, the less variation
from a mathematically perfect pattern it takes to make the
exponential detection function the most reliable predictor of
POD. Adding other sources of random variability or uncer-
tainty about the search parameters will only reinforce the
exponential detection function as the most reliable estima-
tor of POD.

Note: We are discussing the average performance over
many searches and using that information to predict or esti-
mate the results of a single search. However, the actual POD
achieved on any single search can be outside the shaded
envelope of Figure 13. One could get lucky and find the
search object very early in the search without expending
much effort, creating a (statistically incorrect) temptation to
claim a 100% POD for a coverage of less than 1.0. A more
likely situation is one where there is some hidden bias or sys-
tematic error in the conduct of a search, such as avoiding dif-
ficult patches of terrain, making the actual POD for that
search significantly less than the value predicted by the
exponential detection curve. We can never know the actual
POD of any search. We can only know the “found/not
found” outcome. However, search managers and search team
leaders need to be aware that actual PODs can be less than
those predicted by the exponential detection function. These
individuals need to be alert for and report any problems with
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the execution of individual searches that might cause such a
reduction in POD.

Characteristics  of  POD Coverage
vs.  Cooveeraagee Curves

All POD vs. Coverage curves have some important prop-
erties in common. All begin at the origin (0, 0%) with a slope
of 1.0, i.e. the “rise” of the line tangent to the curve at the
origin equals the “run.” All but that of the “perfect” definite
range detection profile fall away from this 45° line at some
point and approach a POD of 100% more and more gradu-
ally as coverage increases. This property produces a situa-
tion of diminishing returns. For example, suppose five
searchers can search an area with a coverage of 0.5 during
one sortie. Using the exponential detection function, this
would produce a POD of about 39%. Adding five more
searchers would give a coverage of 1.0 and a POD of about
63%—an increase of about 24%. Note that doubling the
effort did not double the POD. Adding five more searchers
would give a coverage of 1.5 and a POD of about 78%—an
increase of only about 15%. Finally, adding five more
searchers (for a total of 20) gives a coverage of 2.0 and a
POD of about 86.5%—an increase of less than 9%. High
coverages, and hence high levels of effort, are required to
achieve high PODs. However, the POD per unit of effort
expended goes down as the total amount of effort expended
increases. Another lesson is that a very high coverage prob-
ably is not the wisest way to apply limited resources unless
a very high POD is required after only one search, such as an
evidence search where searchers are likely to disturb or
destroy evidence not found on the first pass.

An  Example
We’ve covered a lot of ground in this article. It may be

helpful at this point to give an example of how to use what
we’ve learned so far. Suppose we are searching for a lost
child, age 9, in the woods near his home. Suppose we assign
a three-person search team to a segment of the search area
having a size of 0.25 square miles. Finally, suppose we have
previously conducted sweep width experiments in similar
terrain for search objects resembling a 9-year-old child, and
those experiments produced a sweep width of 106 feet for
comparably trained/skilled searchers moving at 0.5 mile per
hour. We expect our search team to move at about 0.5 miles
per hour and take about six hours to complete their search
of the segment. What POD should we expect?

From Equation [7], we start by computing the effort, or
total distance moved, for one searcher, as

z = v x t = 0.5 mph x 6 hours = 3 miles per searcher
Since we have three searchers, the total effort is 3 x 3 or 9
miles for the team as a whole. We will assume the sweep
width determined from earlier experiments is a good esti-
mate for the sweep width in our current situation. Converting
this value from feet to miles so our units of measure are con-
sistent, we get

W =
106 feet________________ = 0.02 miles5280 feet/mile

Now we may compute the effective search effort, Z, as
follows, using Equation [8]:

Z = W x z = 0.02 mile x 9 miles = 0.18 square miles

We can now compute the coverage using Equation [9]:

C = Z 0.18 square miles__________________ = 0.72
A 0.25 square miles

Using Figure 13, we enter at the bottom with a coverage
of 0.72, go up to the exponential detection curve, and read a
POD of about 51% from the vertical axis to the left. If a sci-
entific calculator is handy and has an exponential function
button, we may also compute the POD from Equation [11] 
as follows:

POD = 1 - e-c = 1 - e-072 = 1 - 0.48675 = 0.51325 or 51.325%
The added precision is, of course, completely superfluous.

Although some experienced searchers may not agree,
maritime experience has shown that PODs estimated in this
fashion are generally more reliable, and definitely more con-
sistent, than direct estimates of POD provided by the
searchers themselves. POD estimates from searchers often
tend to be optimistic, i.e., too high. Based on the results of
carefully designed and controlled scientific experiments,
maritime search planners have adopted a philosophy of ask-
ing searchers to report those things affecting detection which
they can actually observe. This includes such things as mete-
orological visibility, wind velocity, sea state, and crew
fatigue, to name a few, along with any other on-scene obser-
vations they think may be important. (Ground teams would
be expected to report things like the type of terrain and
amount of ground cover they actually encountered, for
example.) However, searchers are not asked to estimate
POD . The search planner uses their reported observations in
combination with tables of experimentally determined sweep
width values and correction factors to estimate the actual
sweep width, coverage and POD.

It is worth considering how to deal with the situation if
our search team in the above example unexpectedly returned
in only three hours instead of six. Let us examine a few of the
many possibilities.

First, the searchers could have been moving at the desired
search speed, traveling a total of only 4.5 miles instead of 9
miles. This means they expended only half as much effort
as expected. If the team is sure they “covered” the entire seg-
ment, we can recompute the effective search effort and cov-
erage using 4.5 miles of effort instead of 9 miles. The results
will be 0.09 square miles and 0.36 respectively. Entering
Figure 13 with a coverage of 0.36, we get a POD of 30%
from the exponential detection function. 

Second, the searchers could have “covered” only half of
the segment at the desired search speed. If it is possible to
determine which half of the segment was “covered,” we can
recompute the coverage by applying the effective search
effort of 0.09 square miles to an area of 0.25/2 or 0.125
square miles to get a coverage of 0.72. Using Figure 13
(exponential detection), we may assign a POD of 51% to
the half of the segment that was searched, and a POD of 0%
to the half that was not. 

A third possibility is that they searched the segment at
twice the expected search speed (1.0 mph). In this case, they

14

= 

© Copyright 2000 J.R. Frost 



would have traveled the expected distance and expended 9
miles of effort. However, recalling the discussion in Part I
about the detrimental effects of increased speed on effective
sweep width, it is likely that the actual sweep width for the
search was less than the 106 feet obtained in experiments
where searchers were moving at only 0.5 mph. If sweep
width data or an experimentally verified correction factor is
available for the higher speed, then a sweep width value for
the higher speed could be estimated and used to recompute
effective search effort, coverage and POD. Otherwise, we
will have to estimate the actual sweep width as best we can
and use that value to recompute effective search effort, cov-
erage and POD . A smaller sweep width, of course, will pro-
duce a smaller effective search effort, coverage and POD. 

Finally, a fourth possibility is that the terrain was not as
difficult to traverse or search as we had anticipated. This
could mean the search object should have been more
detectable than originally thought, making the sweep width
greater than 106 feet. To find out, we would go back to the
table of sweep width values for various environments and
find the one for the terrain (and search speed, search object,
etc.) that most closely corresponded with what the searchers
actually encountered. Using that new sweep width value,
we would then recompute the effective search effort and cov-
erage. A larger sweep width would, of course, produce a
larger effective search effort, coverage and POD.

Looking  Ahead
Determining where to send a limited number of resources

and how large their assigned areas should be is the ultimate

question we are striving to answer. One requirement for
answering this question is having a reliable way to estimate
effective sweep widths (detectability) so we can compute the
effective search effort each resource can deliver. A second
requirement is the availability of a reliable POD vs.
Coverage curve so we have an objective method for esti-
mating how changes in coverage resulting from different
allocations of effort will affect PODs. That is, we need to
know what PODs we can expect from concentrating our
resources in small areas, and what PODs we can expect as
we spread our resources out over progressively larger areas.
A third requirement is an estimate of search object’s location
probability density distribution over the area. Part III:
Probability Density Distributions will address this issue. In
Part IV: Optimal Effort Allocation we will seek to answer the
question of how to make the best use of the available effort.

Food for thought until next time: Suppose the area con-
taining a lost or missing person is divided into 10 regions.
Suppose two of these regions are each assessed as ”very
likely” to contain the person and all the others are assessed at
varying, but lower, likelihoods. Finally, suppose one of the
top two regions is significantly larger than the other. Does
the assessment of “very likely” mean the top two regions
each have about the same probability of containing (POC or
POA) the person or does it mean they each have about the
same probability density (probability per unit area or
POC/A)? Warning: The answer could make a significant dif-
ference in how the available effort should be allocated when
we get to Part IV. 

15
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poses of this discussion, we define a regular grid as one that
forms geometrically identical square cells. Each cell is then
labeled with its POC value. Since all cells are equal in size, a
cell’s POC value is proportional to its Pden value. This type
of display has the dual advantages of showing at a glance
both how much probability each cell contains and where the
highest probability densities lie. Although the POC and Pden
values are not numerically equal, a cell with twice the POC
value of another cell also has twice the Pden value of that
other cell when a regular grid is used. Figure 14 is an exam-
ple of a probability map.

Figure 14

To determine where to search, we must first estimate
where the lost or missing person could be. This requires a
careful, deliberate, thoughtful assessment of all the avail-
able information as well as the continual seeking of addi-
tional information from all possible sources. “Available
information” is an all-inclusive term referring to every scrap
of evidence and data that might shed some light on the lost
person’s probable locations. In addition to data about a spe-
cific incident, statistical data from similar situations, such
as lost person behavior profiles, can be very useful.
Historical data can also be useful, especially in popular
recreational areas. 

In SAR situations, data is frequently obtained from a vari-
ety of sources and is often inconsistent. However, such data
also tends to form a number of self-consistent sets that each
tell a “story” about what might have happened and where the
lost person might be. These “stories” are called scenarios.
Careful analysis of each scenario is then required to esti-
mate the lost person’s probable locations if that scenario is
true. These estimates are then quantified as probability maps,
thus defining that scenario’s probability density distribu-

17

Note: Readers are encouraged to re-read “Principles of
Search Theory, Parts I and II,” printed in Volume 17,
Number 2 of Response. We will be referencing them fre-
quently. Readers are also encouraged to have pencils, a
scratch pad, some graph paper, and a calculator handy.

Where  to  Search
Our first two articles dealt exclusively with the mechan-

ics of searching. We developed the concept of effective
sweep width (detectability) and examined how sweep width,
effort, coverage, and probability of detection over an area are
all related. However, we did not discuss any issues related
to where the searching should be done. Our ultimate goal is
to determine not only where to search in general, but also
how to deploy the available effort in the most efficient man-
ner. An essential factor in deciding how much effort to place
in each portion of the search area is an estimate of how the
probability density is distributed over the search area.
Probability density (Pden) is simply defined as

[12] Pden = POC ,
A

where POC (also called POA) is the probability that the
search object is contained in some area and A is the size of
that area.

Effective  Search  (or  Sweep)  Rate
Another important quantity we will need for our discus-

sions here, and for the optimal effort allocation discussions
in Part IV, is the effective search (or sweep) rate. It is sim-
ply the product of the effective sweep width, W, and the
search speed for which that effective sweep width is valid.
Stated as an equation,

[13] Effective Sweep Rate = W x (Search Speed).

The effective sweep rate has units of area per unit time (e.g.,
square miles per hour). As we will see in Part IV, the best
placement of the available effort will depend on the interplay
between probability density and effective sweep rate as one
evaluates the search area looking for the best places to search
during the next search cycle.

Probability  Density  Distributions  and  Probability  Maps
A probability density distribution is usually represented

by a probability map consisting of a regular grid. For the pur-

Principles  of  Search  Theory
Part  III:    Probability  Density  Distributions

by J. R. Frost
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tion. The different scenarios are then subjectively “weighted”
according to the search planner’s perceptions of their relative
accuracy, reliability, importance, etc., and their probability
maps are then combined appropriately. Probability maps for
different scenarios are generally combined by computing, for
each cell in an area large enough to include all scenarios,
the weighted average (using the subjective scenario weights)
of the cell probabilities from each scenario. 

Unfortunately, formal search theory does not shed much
light on how to go about turning an inconsistent body of evi-
dence and data from a variety of sources into numbers on a
probability map. As Stone,5 one of the world’s leading
authorities on search theory and its practical application,
observes, “One of the greatest difficulties in generating prior
[to searching] probability maps is the lack of systematic,
proven techniques for eliciting subjective inputs for search
scenarios.” He goes on to say, “In addition to obtaining sub-
jective probabilities, we also have the problem of obtaining
subjective estimates of uncertainties, times, and other quan-
titative information needed to form scenarios.”

Scenario development and analysis is a complex, diffi-
cult, mentally demanding task requiring a good deal of con-
centration, attention to detail, and mental discipline.
Appropriate resources should be dedicated to this task and
insulated from the often frenetic, and always distracting,
operational activities. This frequently seems difficult to do in
SAR situations. The first impulse is to get as much search
effort as possible into the field as soon as possible because
statistics show that a lost person’s chances for survival
decrease rapidly as time passes. While there is nothing
wrong with mounting a large initial effort (provided more
effort is on the way) based on only a cursory evaluation of
the situation, too often this is not followed up with a more
deliberate evaluation and planning effort for subsequent
searching should the initial efforts fail. In a few publicized
cases, it appears that lost persons who could have, and
should have, been saved were not found in time—sometimes
in spite of huge expenditures of effort in relatively limited
areas. This appears to have been a result of, at least partially,
poor analysis and planning.

Probability  Density  and  its  Importance  
To understand why probability density is important, we

will return to our floor-sweeping analogy where the density
of sand covering the floor is comparable to probability den-
sity in a search situation. We must also briefly jump ahead
to optimal effort allocation; a topic discussed more fully in
Part IV. We will begin by extending our floor-sweeping anal-
ogy to a situation more complex than any we have discussed
so far.

Consider a school gymnasium with a clear floor space
measuring 50 meters by 30 meters for an area of 1,500
square meters (m2). Suppose we divide the floor into four
regions of unequal sizes so that region R1 covers 600 m2, R2
covers 400 m2, R3 covers 300 m2, and R4 covers 200 m2.
Suppose we cover each region uniformly with sand at the
densities (in grams per square meter (g/m2) of floor space)
shown in the third column of Table 1. The values in the last
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two columns were computed from the corresponding area
and density values in the second and third columns. Figure
15 illustrates the situation.

Table 1

Figure 15

Suppose we have only one sweeper, whose broom is B2
from our sweep width experiments (see Part I) and whose
rate of motion anywhere in the gym is 0.5 m/sec (30 m/min)
regardless of the density of the sand. Finally, suppose our
lone sweeper is available for only five minutes. If we wish
for our sweeper to remove the greatest possible amount of
sand in the time available, where should the sweeping be
done?

In five minutes, the sweeper can move the broom a dis-
tance of 150 meters. In other words, the available effort, as
defined in Part II, is 150 m. Since broom B2 is one meter in
width, the sweeper could sweep an area of 150 m2. This is
less than the area of any of the four regions. However, all
other things being equal, the most productive place to sweep
will be R1 because that is where the sand is most densely
spread. Recall that broom B2 is uniformly 50% effective
across its one-meter width and therefore has an effective
sweep width of only 50 cm (0.5m). Recalling Equation [4]
from Part II, 

Area Effectively Swept = Effort x (Effective Sweep Width),

the area effectively swept in five minutes is computed to be
150m x 0.5m or 75 square meters. From Equation [5] of Part
II,

Area Effectively SweptCoverage = _________________________ ,
Physical Size of the Swept Area

a coverage of 75m2/150m2 or 0.5 is computed for the swept
area. If the sweeper uses perfectly straight, parallel tracks at

Region Area Density of Amount of Sand Percentage of
(m2) Sand (g/m2) Contained (kg) Sand Contained

R1 600 20 12 54.55%
R2 400 15 6 27.27%
R3 300 10 3 13.64%
R4 200 5 1 4.55%
Totals 1500 14.67 22 100.00%
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a spacing of one meter, Figure 12 from Part II shows B2 will
sweep up 50% of the sand initially present in 150 m2 of R1,
or about 1.5 kg. Sweeping one-fourth of region R1 in this
manner will sweep up more sand in less time than any other
application of the same effort within the gymnasium. This
is true because the density of the sand in R1 is higher than
anywhere else, and it is tacitly assumed the effective sweep
width and speed (i.e., the effective sweep rate) will be the
same everywhere. The unwary could fall into a trap at this
point by jumping to the conclusion that density is the only
variable that needs to be considered. As we will see, the
objective is to sweep up as much sand as possible in the least
amount of time, taking into consideration any and all differ-
ences in both density and effective sweep rate from one
region to another. It is the combined effect of these two vari-
ables that determines where sand can be swept up most
quickly.

Note that although R1 also contained the most sand, it
was the high density, not the high percentage of sand con-
tained in the region, that caused sweeping there first to be
more productive than anywhere else. In other words, when
deciding where to place effort, the density of sand covering
the floor in a region is far more important than the amount of
sand contained there. Therefore, how the density of sand is
distributed over the gymnasium floor will have a great deal
to do with how the available effort should be distributed over
the floor in order to sweep up the maximum amount of sand.
Although density is not the only factor to consider when mak-
ing effort allocation decisions, this brief example shows that
it plays a major role. 

Creating  Probability  Density  Distributions
As mentioned previously, constructing a probability den-

sity distribution from the available information and evidence
can be a difficult undertaking. In some cases, however, it is
reasonable to assume a standard type of probability density
distribution. We will briefly describe two such distributions
and then return to the more general problem.

Circular  Normal Probability  Density  Distributions
When a distressed aircraft flying over a remote area or a

distressed vessel at sea reports its position, the known
characteristics of navigation make it reasonable to assume
the actual position may be some distance from the reported
position (at least this was true before GPS receivers became
so readily available). Analyses of these characteristics have
shown that the actual positions often have a circular normal
probability density distribution centered on the reported
position. (Actually, the more general elliptical bivariate nor-
mal distribution is more correct, but the circular normal is a
satisfactory example for this discussion.) For the mathemat-
ically inclined, the amount of probability contained (POC) in
a circle drawn about the center of this type of distribution is
given by 

-R2

POC = 1– e 2

where e is the base of the natural logarithms (≅ 2.71828)
and R is the radius of the circle in standard deviations (σ).
(Note that for a circular normal distribution, the amount of
probability contained within one standard deviation of the
mean (center) is only about 39%, as compared to about 68%
for the more familiar one-dimensional “bell curve.” Readers
who want more information about the statistics of bivariate
(two-dimensional) data are encouraged to consult a stan-
dard text on statistics.)

The radius for which the POC is 50% is defined by sta-
tisticians as the probable error of the position. The probable
error defines the size of the circle where the chances of the
actual position being inside the circle equal the chances of it
being outside the circle. If we center a regular grid on the
reported position and compute the amount of probability
contained in each cell, we get a probability map like that
shown in Figure 16, where the radius of the dashed circle is
the probable error. The circle contains 50% of the probabil-
ity. The other 7.91% contained in the center cell comes from
the area that is outside the circle but inside the cell in the four
corners.

Figure 16

Although situations where this type of distribution would
apply are relatively rare in inland SAR (e.g., the forced land-
ing of an aircraft in a remote area), they are much more com-
mon in maritime SAR. Whenever it does apply, the search
planner can estimate the probable error of a reported posi-
tion and use Figure 16 (or a version with a finer grid) scaled
to match the appropriate charts or maps, to plan the search.
Of course, it might be necessary to adjust both the reported
position and the size of the probable error based on such
factors as the glide characteristics of the distressed aircraft or
the drift characteristics of a life raft from a ship that sank.

Uniform  Probability  Density  Distributions
Suppose the pilot of an aircraft issues a mayday call giv-

ing his tail number but no position. Assume checking the
flight plan reveals that the aircraft was supposed to be engag-
ing in a biological survey of a known wilderness area at the
time, but no specific flight path was given. If no other infor-
mation is available, the search planner has little choice but to
regard all parts of the area as equally likely to be the site of
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the distress. This means the probability density is uniformly
distributed over the area. Figure 17 shows a probability map
for a uniform probability density distribution.

Figure 17

Generalized  Probability  Density  Distributions  
Although resorting to a “standard” probability density

distribution is the easiest way to generate a probability map,
it is not always possible to find one that adequately describes
what the available evidence indicates about where the search
object may be located. This is a very common situation in
inland SAR right from the start. Even in maritime cases,
what may have started out as a “standard” distribution often
becomes generalized rather quickly due to the vagaries and
uncertainties of oceanic drift. The Coast Guard addresses
this problem via its Computer Assisted Search Planning
(CASP) system. CASP takes both the known variations in
winds and current from one place and time to another and
their respective probable errors into account. CASP then
computes tens of thousands of independent drift trajectories
using this data. The end result might look something like
the probability map shown in Figure 18.

Figure 18

Estimating  Probability  Densities  
Although formal search theory provides methods for

optimally allocating effort once a probability density distri-
bution has been defined, it does not shed much light on how
to evaluate evidence, clues, historical data, lost person
behavior profiles, etc., and use those evaluations to create a
corresponding probability density distribution. While we
cannot offer much guidance at this point about assessing the
available information and data, we can examine some pos-
sible methods for assigning numeric values to those assess-
ments.

Let us return to the gymnasium floor described above and
shown in Figure 15. We now obtain an undistorted photo-
graph of the entire floor from a point directly above its cen-
ter and make three copies. Like Figure 15, there is enough
contrast for a person to discern the four regions and the fact
that the density in R1 is greater than that in R2 which is
greater than that in R3 which is greater than that in R4.
Finally, we arrange to have three floor sweepers, Tom, Dick,
and Mary, participate in some experiments.

Clearly, this is not a very realistic analogy for the kind of
evidence a search planner would have to evaluate. Never-
theless, the examples that follow will provide some valu-
able insights into certain kinds of problems that can arise
when attempting to translate assessments into probability
maps.

Estimating  Containment  Percentages  Directly  
We begin by showing Tom (in isolation from the others)

one of our photographs. We ask him to mark off the four
regions and estimate what fraction of the sand is in each.
We will call this fraction the percentage of containment
(poc). Tom will likely regard this as a difficult assignment.
It is clear that R1 covers a little less than half the floor’s area
but it is also clear that the sand is more dense there than any-
where else. Tom must weigh both factors when making his
estimate. Table 2 summarizes Tom’s estimates of how much
sand, as a percentage of the total, each region contains.
Compare the estimated percentages and the computed
amounts and densities to the corresponding quantities in
Table 1.

Table 2

The estimated percentages of containment, though imper-
fect, are actually very good, producing densities that are rea-
sonably accurate and in about the correct relationship to one
another. In Part IV, we will see that using these densities

TOM’S ASSESSMENTS
Region Area Estimated Computed Amount Computed

(m2) poc of Sand (kg) Density (g/m2)

R1 600 50% 0.50 x 22 = 11.0 11,000/600 = 18.33
R2 400 30% 0.30 x 22 = 6.6 6,600/400 = 16.50
R3 300 15% 0.15 x 22 = 3.3 3,300/300 = 11.00
R4 200 5% 0.05 x 22 = 1.1 1,100/200 = 5.50
Totals 1500 100% 22.0 22,000/1500 = 14.67
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would cause a less-than-optimal level of effort to be assigned
to region R1, and more-than-optimal amounts of effort to be
assigned to the other three regions. (In this context, an
“optimal” allocation of effort is the one that causes the great-
est amount of sand to be swept up in the shortest amount of
time.) Although the resulting sweeping (search) plan would
be suboptimal, it would not be dramatically so.

Ranking  the  Regions  
We now call in Dick, give him one of our photographs,

and ask him to mark off the four regions. We then ask him
to rank the regions, using letters, by the amount of sand each
one contains. Since there are four regions and it is pretty
obvious all contain different amounts of sand, Dick chooses
to use the letters A through D, with A denoting the region
with the most sand. Dick finds this a very easy task, and his
rankings, along with the percentages and densities they
imply are shown in Table 3. 

Although the percentages reflect Dick’s ranking, they are
not very accurate. The computed densities are also inaccu-
rate. As a result, the values computed from Dick’s ranking
fail to represent the photographic evidence and also fail to
approximate the actual values as closely as Tom’s estimates
in three of the four regions. Although the simple ranking
method was very easy in this case, we must conclude that it
did not produce valid densities on which to base an optimal
sweeping (search) plan. Clearly, there is something wrong
with this technique.

Ranking  the  Regions—Again
We now call in Mary and present her with the same prob-

lem as Dick, (i.e., ranking by letters). We want to see if the
difficulty we just experienced will repeat itself. She marks

the boundaries of the four regions on the photograph but then
goes a step further. She draws a grid on the photograph that
is three cells wide by five cells long, dividing the floor into

15 square cells of equal size. Conveni-
ently, each region is comprised of a
whole number of cells. She then ranks
each cell using the same four-letter
ranking scale Dick used. Each cell in
region R1 is ranked as “A,” each cell
in R2 is ranked as “B,” each cell in R3
is ranked as “C” and each cell in R4 is
ranked as “D” as shown in Figure 19.

Grouping the cells by region, she
gets the results shown in Table 4.

At first glance, it appears Mary may
have stumbled upon a perfect method

since the regional percentages of containment, amounts of
sand, and densities computed from her assessments are all
exactly correct! Further consideration may indicate that she
was just lucky. The numeric values assigned to the letters in
our ranking scale happen to be exactly proportional to the
actual cellular percentages of containment. Multiplying each
of the numeric ranking values (4, 3, 2, and 1) by 2.27 pro-
duces the actual cell poc values (9.09, 6.82, 4.55, and 2.27).
From another, equivalent, point of view, we can say the num-
bers 4, 3, 2, and 1 are in the same relationship to one another
as the different cell percentages (e.g., 9.09/6.82 = 4/3).

It is worthwhile at this point to note the relationship of the
ranking values to the densities. Multiplying each of the rank-
ing values (4, 3, 2, and 1) by five produces the density val-
ues (20, 15, 10, and 5). This means these two sets of values
are also proportional to one another, just as in the case of

DICK’S ASSESSMENTS
Region Letter Numeric Computed Computed Amount Area Computed

Designation Rank poc of Sand (kg) (m2) Density (g/m2)

R1 A 4 4/10 = 40% 0.4 x 22 = 8.8 600 8,800/ 600 = 14.67
R2 B 3 3/10 = 30% 0.3 x 22 = 6.6 400 6,600/ 400 = 16.50
R3 C 2 2/10 = 20% 0.2 x 22 = 4.4 300 4,400/ 300 = 14.67
R4 D 1 1/10 = 10% 0.1 x 22 = 2.2 200 2,200/ 200 = 11.00
Totals 10 10/10 = 100% 1.0 x 22 = 22.0 1500 22,000/1500 = 14.67

Table 3

MARY’S ASSESSMENTS
Region Letter Numeric Computed Cell Computed Region Computed Amount Computed Density

Rank Rank poc poc of Sand (kg) (g/m2)

R1 6 x A 6 x 4 = 24 4/44 = 9.09% 6 x 9.09 = 54.55% 0.5455 x 22 = 12 12,800/ 600 = 20
R2 4 x B 4 x 3 = 12 3/44 = 6.82% 4 x 6.82 = 27.27% 0.2727 x 22 = 6 6,000/ 400 = 15
R3 3 x C 3 x 2 = 6 2/44 = 4.55% 3 x 4.55 = 13.64% 0.1364 x 22 = 3 3,000/ 300 = 10
R4 2 x D 2 x 1 = 2 1/44 = 2.27% 2 x 2.27 = 4.55% 0.0455 x 22 = 1 1,000/ 200 = 5
Totals 44 100.00% 22 22,000/1500 = 14.67

Table 4

Figure 19
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the cellular percentages of containment. This in turn means
Mary could have used any smaller grid size she liked (e.g.,
one with 5 m x 5m cells), assigned letter values to each in the
same way (e.g., 24 As, 16 Bs, etc.), and obtained the correct
results for regional percentages and densities. She also could
have dispensed with the grid altogether and used the areas
of the regions in place of the number of cells in Table 4. 

From Mary’s assessment, using a regular grid of cells,
we may produce a “map” like that in Figure 20, showing
how the sand is distributed. Note that on this “map,” higher
percentages imply proportionately higher densities. 

Mary’s good fortune illustrates an important lesson for
search planning:  Whenever an assessment value is assigned
to a subdivision of the possibility area, that value must be
proportional, in a precise mathematical sense, to the subdivi-
sion’s probability of containing the search object. Similarly,
the assessment values must reflect the correct relationships
among the subdivisions. If one subdivision is assessed as an
“8” and another as a “4,” the implication is that the first sub-
division is twice as likely to contain the search object as the
second. If the evaluator does not agree with this implica-
tion, then he has chosen one or both values incorrectly.

An  Assessment  Based  on  Density  Estimates  
It might have been an interesting exercise to ask the

sweepers to estimate, from the photograph, the relative den-
sities in the regions instead of percentages of containment.
Such estimates could have been applied to the areas of the
regions to get estimates of the relative amounts of sand con-
tained in each. Then, these relative amounts could have been

used to compute the percentages of containment. The results
might have been both more accurate and more consistent if
this had been tried. For example, suppose an evaluator had
estimated from the photograph that the density in region R3
was twice that of region R4, the density in R2 was three
times that of R4 and the density in R1 was four times that in
R4. Table 5 shows how the percentages of containment
could be computed from these relative density estimates.

Another  Short  Exercise
To show that an assessment method works, in general, if

the assessment values accurately represent the relative pro-
portions of the percentages of containment, suppose we
sweep the gymnasium floor clean and set up a new experi-
ment as illustrated in Figure 21.

We will use the same regions and densities as before but
distribute the sand as follows: 5 g/m2 in R1, 10 g/m2 in R2,
15 g/m2 in R3, and 20 g/m2 in R4. This means R1 will con-
tain 3 kg of sand, R2 will have 4 kg, R3 will have 4.5 kg, and
R4 will have 4 kg for a total of 15.5 kg. Knowing the previ-
ous four-letter scale produces numbers that are in the cor-
rect proportions for these densities when using Mary’s
cellular method, we can use these letters again with confi-
dence to produce Table 6. 

Note that it would be more difficult to apply a simple
ranking system to this distribution than the previous one
because it is much less obvious which region contains the
most sand and which contains the least. However, even if
we use the correct regional poc values from Table 6 as the
basis for a simple ranking, the results will be inaccurate.
Table 7 shows the percentages, amounts of sand, and densi-
ties that would be computed from such a simple ranking.
Compare these to the correct values in Table 6 below.

We must again emphasize that, if assessment values are to
produce accurate and valid probability of containment (POC
or POA) estimates, the value assigned to each region, cell,
segment, or any other subdivision of the search area must
be mathematically proportional to that subdivision’s proba-
bility of containment. Stated another way, the assessment
values assigned to the various subdivisions must be in the
correct proportions to one another across the search area as
a whole.

22

Figure 20

Figure 21

Table 5

DENSITY-BASED ASSESSMENTS
Region Area Relative Relative Amount Computed

(m2) Density of Sand poc

R1 600 4 600 x 4 = 2400 2400/4400 = 54.55%
R2 400 3 400 x 3 = 1200 1200/4400 = 27.27%
R3 300 2 300 x 2 = 600 600/4400 = 13.64%
R4 200 1 200 x 1 = 200 200/4400 = 4.55%
Totals 1500 4400 4400/4400 = 100%
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Analysis  of  Results
Tom had difficulty coming up with correct values because

he had to mentally estimate percentages of containment by
balancing the sizes of the regions against their apparent rel-
ative densities. Nevertheless, he was able to produce rea-
sonably satisfactory results for this very simple problem. It is
unlikely he would do as well with a more complex situa-
tion, such as that represented by Figure 21. 

Dick’s simple rankings produced unsatisfactory estimates
of both percentages of containment and densities. A simple
ranking does not address the essential proportionality rela-
tionships needed for estimating these values. Therefore, sim-
ple ranking systems should not be used since they produce
inconsistent and misleading results.

Mary solved Tom’s problem with unequal areas by using
a regular grid. A grid worked well for this problem, but grids
may not work as well in situations where irregular geo-
graphic features are a significant factor in assessing where
the lost person is likely to be. Because Mary was also fortu-
nate enough to be using assessment values that were in the
same proportions as the actual densities (and cellular per-
centages of containment), her results were exactly correct. In
a sense, Mary was not ranking the cells as much as she was
rating them on a scale of 1 to 4—a scale that happened to
provide exactly the values she needed. 

Proportional  Assessment
Since correct proportionality is so important, we need a

procedure for making proportional assessments that is more
dependable than Mary’s happy accident. One such procedure
is for each evaluator to decide which region contains the
most sand (probability) and then rate all other regions against
this “standard.” For example, suppose Dick had rated the

regions of Figure 15 on a scale of, say, 1 to 10 with R1 being
assigned a value of 10. If he then decided that R2 contained
a little more than half as much sand as R1, he might have
rated it with a value of 6 (i.e., as containing about 60% as
much sand as R1). Similarly, he might have rated R3 with a
value of 3 (30% as much sand as R1) and R4 with a value
of 1 (only 10% as much sand as R1). If Dick had chosen
these proportional assessment values, his results would have
been much closer to the actual values shown in Table 1. In
fact, his results would have been identical to Tom’s in Table
2, as shown in the table below. 

For Figure 21, using the same 10-point scale and pro-
portional assessments of 6, 8,10, and 8 for R1 – R4 respec-
tively would have produced regional poc values of 18.75%,
25%, 31.25% and 25% respectively. These are very close to
the correct values shown in Table 6. (The reader is encour-
aged to verify these figures and compute the amounts of sand
and densities as an exercise.) It is important to understand
that simply sorting the regions into a list in descending order
of percentage of containment does not provide enough
information to reliably estimate what those percentages are.
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CELLULAR ASSESSMENT OF FIGURE 21
Region Letter Numeric Computed Cell Computed Region Computed Amount Computed Density

Rank Rank poc poc of Sand (kg) (g/m2)

R1 6 x D 6 x 1 = 6 1/31 = 3.23% 6 x 3.23 = 19.36% 0.1936 x 15.5 = 3.0 3,000/600 = 5
R2 4 x C 4 x 2 = 8 2/31 = 6.45% 4 x 6.45 = 25.81% 0.2581 x 15.5 = 4.0 4,000/400 = 10
R3 3 x B 3 x 3 = 9 3/31 = 9.68% 3 x 9.68 = 29.03% 0.2903 x 15.5 = 4.5 4,500/300 = 15
R4 2 x A 2 x 4 = 8 4/31 = 12.90% 2 x 12.90 = 25.81% 0.2581 x 15.5 = 4.0 4,000/200 = 20
Totals 31 100.00% 15.5 15,500/1500 = 10.33

Table 6

SIMPLE RANKING ASSESSMENT OF FIGURE 21
Region Letter Numeric Computed Computed Amount Computed

Designation Rank poc of Sand (kg) Density (g/m2)

R1 C 1 1/8 = 12.5% 0.125 x 15.5 = 1.9375 1,937.5/600 = 3.23
R2 B 2 2/8 = 25.0% 0.250 x 15.5 = 3.8750 3,875.0/400 = 9.69
R3 A 3 3/8 = 37.5% 0.375 x 15.5 = 5.8125 5,812.5/300 = 19.38
R4 B 2 2/8 = 25.0% 0.250 x 15.5 = 3.8750 3,875.0/200 = 19.38
Totals 8 100.0% 15.5000 15,500/1500 = 10.33

Table 7

PROPORTIONAL RATING ASSESSMENT OF FIGURE 15
Region Proportional Computed 

Assessment poc

R1 10 10/20 = 50%
R2 6 6/20 = 30%
R3 3 3/20 = 15%
R4 1 1/20 = 5%

Totals 20 100%
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Another way to solve the problem of
unequal areas, from a mathematical stand-
point at least, is to use a proportional
assessment technique to estimate the rela-
tive densities and use them in conjunction
with the regional areas to compute percent-
ages of containment. Table 5 above illus-
trated how this could be done. 

Containment  vs.  Density  Estimates

It is important at this point to reconsider
the question posed at the end of Part II:
If two regions of different sizes are each
assessed as being “very likely” to contain
the search object, does it mean 

a) their probabilities of containment are both equally high 
or 

b) their probability densities are both equally high? 

When an evaluator believes a particular portion of the
search area is “very likely” to contain the search object he
could mean one of two things: 

1. Considering all pertinent data, this portion of the search
area is very likely to contain the search object irrespective
of its size as compared to the other portions. In this case,
he is estimating a relative probability of containment.

2. Considering all pertinent data, this portion of the search
area is very likely, relative to its size, to contain the search
object as compared to the other portions in relation to their
sizes. In this case, he is estimating relative probability den-
sity.

When it comes to computing probability densities for use
in the optimal allocation of effort, the distinction between
these two interpretations is of paramount importance. A
small portion of an area may have a high probability density
and a low probability of containment. On the other hand, a
large portion may have a low probability density but a high
probability of containment. A small portion with a high prob-
ability of containment will necessarily have a high proba-
bility density. Similarly, a large portion with a high
probability density will necessarily have a high probability of
containment. It is easy to become confused, and it is neces-
sary to take conscious steps to avoid such confusion. It all
boils down to exactly how the evaluator accounts for differ-
ing sizes among the regions, segments, etc., comprising the
search area. The evaluator’s mode of thinking (containment
vs. density) may in turn depend on the nature of the available
information. When using a regular grid or other arrangement
where all the basic subdivisions of the search area have the
same size, the evaluator is freed from this potential point of
confusion. In this situation, an estimate of the relative prob-
ability densities is also an estimate of the relative probabili-
ties of containment and vice versa.

Using the densities of sand on different parts of a floor
as an analogy for probability density, readers are encouraged 
to develop a probability map for Figure 21 using Table 6.
(The correct answer is contained in this article.) Readers are

also encouraged to make up their own
exercises, like those above, and develop
the corresponding probability maps. This
practice will provide a deeper understand-
ing of the concepts involved.

Proper  Use  of  Probability  Density
We must pause again for a preview of

things to come if we are to avoid leaving
false impressions from our simple exam-
ples. So far, the only variable we have con-
sidered is probability density and the only
problem we have really considered is
where to place the first small increment of
effort. (Recall that a searcher’s effort is de-
fined as the distance traveled by the

searcher while searching, or, equivalently, the searcher’s
speed times the amount of time spent searching.) We have
looked at the effects of density differences while keeping
speed and sweep width (i.e., the effective sweep rate) con-
stant in order to give a simple demonstration of why proba-
bility density is important. We have not yet tried to show how
variations in probability density should be used in the more
complex, and more typical, effort allocation problems that
also involve variations in effective sweep rates as well as
the simultaneous placement of significant numbers of
resources in different parts of the search area. Therefore,
readers should not jump to the conclusion, for example, that
regions, segments, cells, etc., should be searched in descend-
ing order of probability density. Unfortunately, the answer
is not that simple.

The ultimate issue for the search planner is determining
how the available effort should be apportioned among the
various parts of the search area. A simple ranking might tell
the planner where to send a single resource initially, but it
does not tell him how to distribute a number of resources
over the area as a whole. In other words, if we are to make
the best use of our resources, we must know not only where
to place effort, but how much of the available effort should
be placed in each part of the overall search area. The proba-
bility densities in the various portions of the search area are
an important factor to consider. Other equally important fac-
tors include the effective search (or sweep) rates in the dif-
ferent portions of the search area as well as the sizes (areas)
of those portions. In Part IV—Optimal Effort Allocation,
we will see how the combined effects of all these factors
affect the choice of areas where effort should be placed and
how much of the available effort should be assigned to each
in order to maximize the probability of a successful outcome.

Creating  Generalized  Probability  Density  Distributions  

Whenever search planners outline areas on a map or chart
and assign probability values to them, they are creating a
probability density distribution, regardless of whether they
are thinking of their estimates in that way. A good estimate
of how the probability density is distributed over the possi-
bility area is an essential input when deciding how to deploy
the available effort so we maximize our chances for finding
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Obtaining meaningful
Probabilities of
Containment
REQUIRES
the use of a

Proportional
Assessment
Technique.
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the lost person in the minimum amount of time. Therefore,
we must be very careful about how subjective assessments
are translated into probabilities of containment (POCs) with
their corresponding probability densities (Pdens). As we
have just seen, even when there is evidence as good as a pho-
tograph showing how the density is distributed (something
that will never be available for search planners), significant
problems can arise from some techniques of turning subjec-
tive estimates into numeric values. All of the available evi-
dence bearing on where the lost person might be during the
next set of search sorties needs to be care-
fully evaluated in a way that will produce a
valid estimate of how the probability den-
sity is distributed. Although very subjec-
tive assessments will always be necessary
and current practices typically produce
estimates of probabilities of containment,
evaluators should be aware of the impor-
tant role the probability densities com-
puted from their POC estimates will play
in finding the optimal distribution of effort.

Some  Things  to  Consider

We will now offer some additional
thoughts for SAR managers and search
planners to consider. 

a. Pre-planned Searches. If historical
records are available for an area of responsibility (AOR)
where SAR incidents are relatively frequent, consider ana-
lyzing those records for historical trends and insights into
where lost persons are most often found. Consider building
historical probability maps and developing optimal search
plans for them (after reading Part IV) for use in initial
searches while the evidence pertinent to a specific incident is
being carefully evaluated. Consider working with a profes-
sional statistician or practitioner of operations research while
doing this work.

b. Assessing the Evidence and Other Data/Information.
When a SAR incident arises, one, or preferably more, per-
sons should evaluate the evidence, clues, historical data,
behavior profiles, etc., and develop estimates of where the
lost person is likely to be. This topic alone could be the sub-
ject of many articles or even books. For now, it is important
to emphasize the requirement for carefully evaluating the
body of available, often conflicting, evidence to extract as
much information as possible about the lost person’s proba-
ble locations. Evaluators should develop a number of sce-
narios compatible with self-consistent subsets of the
available data. The different scenarios should then be
weighted according to their relative likelihood of represent-
ing the true situation. However, evaluators should strive to
avoid “over-assessing” the evidence used in individual sce-
narios. When making estimates that will ultimately be used
to produce probability maps, evaluators must resist the temp-
tation to make distinctions between cells, regions, segments,
etc., that are finer, or more detailed, than the available evi-
dence will support. Recall the example above of the light air-

craft being used to survey a wilderness area. If there truly
were no further information available from any source, it
would be difficult to justify anything other than a uniform
probability density distribution for the scenario of the plane
going down while engaged in survey operations in the area.

c. Assumptions vs. Facts. Evaluators need to clearly
document assumptions they make when developing possi-
ble scenarios and keep them separate from the known facts.
An assumption, if repeated too often and questioned too sel-

dom, gradually takes on the appearance of
fact and can lead to something called “sce-
nario lock.” Scenario lock occurs when
planners become fixated on a particular
(and not always the most likely) scenario
to the exclusion of all others. Such fixa-
tions may lead planners far astray and
result in significant delays or even com-
plete failures. This unsatisfactory situation
can arise from basing an extended search
on an initial cursory assessment that is
never revisited. Therefore, it is important
to conduct regular re-evaluations to
account for new evidence (including neg-
ative search results), re-evaluate assump-
tions, and prevent scenario lock.

d. Assessments and Planning vs.
Operations. Evaluators should concern
themselves only with evaluating the avail-

able evidence. Such things as the logistical and management
problems associated with the conduct of search operations
should not be allowed to affect the evidence assessment
process. The ultimate objective of evidence assessment is a
probability map that correctly reflects the evaluators’ assess-
ment of the available data. In other words, it is the job of the
evaluators to ascertain, to the best of their abilities, the mean-
ing of the available evidence and data in the context of the
current incident and quantify that meaning via a probability
map. Once a probability map has been constructed from the
assessment results, then search planners can proceed, via
the methods to be described in Part IV, to determine how to
distribute the available effort to the greatest advantage. Once
this is done, search managers can work out the details of how
subdivide regions into manageable segments, how to deploy
and recover the search resources, etc.

e. A Process of Elimination. Like many other types of
investigations, SAR cases are “solved” largely by a process
of elimination. In SAR, the objective is to eliminate uncer-
tainty about the lost person’s location and condition.
Searching is but one of many tools used in the process for
eliminating this uncertainty. However, it is by far the most
involved, expensive, and risky tool, and one that is used only
when it is believed the lost person is in imminent danger.
These are characteristics that require searching to be done
in the most efficient, effective manner possible and justify
significant investment in the assessment of evidence, plan-
ning of searches, and search planning aids, such as com-
puter programs to compute optimal effort allocations and
keep track of search results.
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straints. Then, briefly, we will discuss how to modify such
plans so that operational constraints may be addressed with-
out decreasing the rate of POS growth or the final POS too
badly.

General  Review
In Part I, the concepts of detection profile and effective

sweep width were introduced. In Part II, the concept of area
coverage was introduced and it was defined in terms of
effort, effective sweep width, and the amount of area over
which the effort was being applied. The relationship between
coverage and probability of detection, POD, was explored
for several different detection profiles when used in parallel
sweep search patterns. The relationship between coverage
and POD for so-called “random” searching was also
explored, producing the exponential detection function.
Graphs depicting these relationships were constructed. An
argument favoring the exponential detection function as the
most realistic estimator of POD under actual operational
search conditions was advanced. In Part III, the importance
of probability density and having a good estimate of how it is
distributed over the search area (the probability density dis-
tribution) were demonstrated using the density of sand on a
floor as an analogy. The concept of effective search (or
sweep) rate was introduced. The notion of a probability map
was introduced by using a regular grid of cells and estimat-
ing the amount of probability contained in each (probability
of containment, or POC). From these values, probability
densities could be computed for each cell. It was shown that
it was also possible to use the reverse process of first esti-
mating the probability densities and then computing the
probabilities of containment. We will now investigate how
all of these concepts can be used together to make the most
productive use of the available effort.

In the paragraphs that follow, we will revisit the concept
of effective search (or sweep) rate, set up some floor-sweep-
ing experiments and define a term called productive sweep-
ing rate (psr). After performing some experiments to get a
“feel” for the general nature of the optimal effort allocation
problem, we will define a new term called the probable suc-
cess rate (PSR) using the productive sweeping rate from our
experiments as an analogy.

Principles  of  Search  Theory
Part  IV:    Optimal  Effort  Allocation

by J. R. Frost

Note: Readers are encouraged to re-read Parts I, II, and III.
We will be using all of the concepts they introduced. Readers
are also encouraged to have pencils, a scratch pad, some
graph paper, and a calculator handy.

Goal  of  Search  Planning
The ultimate goal of any search planner is to develop a

plan for applying the available resources to the search space
in a way that maximizes the chances for finding the object
of the search in the minimum amount of time. In other
words, the search plan should represent the most effective
and most efficient use of the available effort. Search effec-
tiveness is measured by a quantity called the probability of
success. The probability of success is defined as the product
of the probability that the searched area contained the object
at the time of the search (POC or POA) and the probability of
detecting the object if it was there (POD). The general for-
mula for computing the probability of success for a searched
area is

[14] POS = POD x POC.

Equation 14 may also be used to predict the probability of
success for a search of an area based on predicted POC and
POD values. The overall effectiveness of all searching done
to date is given by the cumulative overall probability of suc-
cess. This value is the sum of all the un-normalized POS val-
ues over all segments of the search area for all searching
done to date. It represents the chances that all searching done
to date would have found the search object if it was any-
where in the possibility (search) area(s) of the scenario(s)
under consideration, regardless of whether all parts of these
possibility area(s) have actually been searched.

Search efficiency is measured by how quickly POS
increases as the search progresses. The search plan that
increases POS at the maximum possible rate for the effort
that is available is said to be a uniformly optimal search plan.
A search plan that achieves the same final POS for the same
effort, but takes longer and/or does not increase POS at the
maximum possible rate in the early stages, is said to be a
T-optimal search plan where T is the time spent expending
the available effort. A T-optimal search plan is the next best
thing to a uniformly optimal search plan. As this article pro-
gresses, we will see how to develop uniformly optimal
search plans in the absence of real-world operational con-

© Copyright 2000 J.R. Frost 



27

Effective  Search  (or  Sweep)  Rate
We will begin by reviewing the notion of effective search

(or sweep) rate. Recall from Part I that the effective sweep
width, W, is a measure of detectability for a particular sen-
sor “sweeping” an area at a particular rate of speed, v, look-
ing for a particular search object under a particular set of
environmental conditions. If objects were uniformly distrib-
uted over a large area, then W is the width of the swath along
the sensor’s track that contains the same number of objects
as the sensor detects in a single pass through the area in a
straight line. This does not imply, however, that all the
objects detected will be within that swath. In fact, the num-
ber of objects detected outside the swath will equal the num-
ber not detected within the swath. (This is yet another way to
define effective sweep width.) The effective search (or
sweep) rate is simply the product of the effective sweep width
and the corresponding search speed. That is,

[15] Effective Search (or Sweep) Rate = W x v.

The effective search rate has units of area per unit time (e.g.,
square miles per hour). Note that multiplying the effective search
rate by the time, t, expended in an area produces the amount of area
effectively swept.

[16] Area Effectively Swept = (Effective Search Rate) x t

A  Floor-Sweeping  Experiment
Let us recall the second gymnasium floor problem used in

Part III and depicted in Figure 22.

The area shown has dimensions of 30 meters by 50
meters. Each of the four regions can be formed from a whole
number of square “cells” measuring 10 meters on a side.
Recall that we used sand as an analog for probability, spread-
ing the sand uniformly within the different regions at cer-
tain pre-determined densities. Table 8 lists the information
on how the sand is distributed.

Figure 23 is a “probability map” corresponding to Figure
22 and Table 8 where the “probabilities” actually show what
fraction of the total amount of sand initially present is
contained in each cell.

Assume that we have obtained the services of five sweep-
ers for a period of 10 minutes (600 seconds). We will assume
they each have a broom like broom B2 from our earlier arti-
cles. Recall that B2 is uniformly 50% effective across its
one-meter width, giving it an effective sweep width of 0.5
meters (m) at a speed of 0.5 meters per second (m/sec) or,
equivalently, 30 meters per minute. Having five sweepers for
10 minutes gives us a total of 50 sweeper-minutes.
Multiplying this value by the speed, v, we get an available
sweeping effort of 50 minutes times 30 meters per minute
or 1,500 meters. We now wish to determine how we should
apply this effort so that the maximum amount of sand is
swept up in the minimum time. Readers are encouraged to
pause for a moment to consider how they would approach
this problem.

Productive  Sweeping  Rate  (psr)
Let us begin by defining the productive sweeping rate as

the amount of sand a broom sweeps up per unit time. The
productive sweeping rate depends on the effective sweep rate
and the density of the sand in the area that is being swept.
The productive sweeping rate (psr) may be computed using
Equation [17].

[17] psr = (Effective Sweep Rate) x Density

For example, if the effective sweep width is 0.5 m and the
sweeping speed is 0.5 m/sec in all regions, then we see from
Equation [15] that the effective sweep rate per broom in all
regions is

Region Area Density of Amount of Sand Percentage of
(m2) Sand (g/m2) Contained (kg) Sand Contained

R1 600 5 3.0 19.35%
R2 400 10 4.0 25.81%
R3 300 15 4.5 29.03%
R4 200 20 4.0 25.81%
Totals 1500 10.33 15.5 100.00%

Table 8

Figure 22

Figure 23

1 2 3 4 5

3.23% 3.23% 6.45% 6.45% 6.45%

6 7 8 9 10

3.23% 3.23% 6.45% 9.68% 12.90%

11 12 13 14 15

3.23% 3.23% 9.68% 9.68% 12.90%
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Effective Sweep Rate =
W x v = 0.5 x 0.5 = 0.25 square meters per second.

If the density is 20 grams per square meter, then we see
from Equation [17] that the productive sweeping rate per
broom is

psr = 0.25 x 20 = 5 grams per second.

Computing the values for each region, we get the results
shown in Table 9. 

Using  Prooducctivee  Sweeeeping Rate  
Sweeping region R4 will produce more sand per second

than sweeping anywhere else, at least initially. Table 9 shows
that 5 g/sec per broom can be swept up. Working together
by spacing themselves one-meter apart in a line abreast for-
mation, the five sweepers can sweep R4 completely one time
with a uniform coverage of 0.5 in just 80 seconds. The total
effort expended is 80 sec x 0.5 m/sec x 5 sweepers or 200
meters. This will remove half of the sand, or a total of 2 kg
from the 4 kg originally present in R4. (That is 12.90% of the
amount of sand initially present in the gym.) However, once
this is done, R4 no longer has the highest density. In fact, its
density and psr have been reduced by half, to those of R2,
or 10 g/m2 and 2.5 g/sec respectively. Updating Table 9 to
reflect this change produces Table 10. Figure 24 shows the
updated probability map. Note that percentages of contain-
ment (poc) and percentages of sand swept up to date (cumu-
lative pos) will be computed with respect to the total amount
of sand initially present. “Re-normalizing” these percentages
to make them reflect the percentages of sand remaining

would add considerably more computation but would not
contribute to our purposes. In fact, re-normalizing would
make keeping track of actual densities, productive sweeping
rates (psr), and the total amount of sand removed to date
(cumulative pos) a much more difficult chore. Although
omission of the re-normalization step may be somewhat dis-
concerting to those familiar with the rule of Bayes and
Bayes’ Theorem from statistics, it will not affect the outcome
of our effort allocation decisions, the amount of sand
removed or the amount of sand remaining in any way.
However, it will make the computations much simpler.

R3 now has the highest psr value at 3.75 g/sec. In another
120 seconds, the five sweepers can complete one coverage
0.5 sweeping of R3, removing half of its sand, or 2.25 kg.
The effort required is 120 sec x 0.5 m/sec x 5 sweepers or

REGIONAL VALUES BEFORE ANY SWEEPING

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 5 1.25 0 0 0
R2 0.25 10 2.50 0 0 0
R3 0.25 15 3.75 0 0 0
R4 0.25 20 5.00 0 0 0

Table 9

REGIONAL VALUES AFTER SWEEPING R4 ONCE

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 5 1.25 0 0 0
R2 0.25 10 2.50 0 0 0
R3 0.25 15 3.75 0 0 0
R4 0.25 10 2.50 80 200 2
Totals 80 200 2

Table 10

Figure 24

1 2 3 4 5

3.23% 3.23% 6.45% 6.45% 6.45%

6 7 8 9 10

3.23% 3.23% 6.45% 9.68% 6.45%

11 12 13 14 15

3.23% 3.23% 9.68% 9.68% 6.45%
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300 meters. As with R4, R3’s density and psr values are
reduced by half, to 7.5 g/m2 and 1.875 g/sec respectively.
In just 200 seconds of elapsed time, 2 + 2.25 or 4.25 kg of
sand out of the total of 15.5 kg on the gym floor have been
removed (cumulative pos = 4.25/15.5 or 27.42%). After this
sweeping, R3 is no longer has the highest psr. That honor is
now shared between regions R4 and R2, as shown in Table
11 and Figure 25.

Between them, R4 and R2 contain 6 kg of sand.
Sweeping these two regions one time at a coverage of 0.5
will require 240 seconds (6 minutes). One such sweeping
will remove 3 kg of sand, reducing their densities to 5 g/m2
– the same density as R1. R4 will be left with 1 kg of sand
and R2 will have 3 kg remaining. So far, we have removed

2 + 2.25 + 3 or 7.25 kg of the sand in the gym for a cumula-
tive pos of 46.77% (7.25/15.5). Note that R4 has been swept
twice, R2 and R3 have each been swept once, and R1 has yet
to be swept at all. Table 12 and Figure 26 show the state of
affairs at this point.

Now, R3 again has the highest psr value. In another 120
seconds, the sweepers can remove half of its remaining sand,
or 1.125 kg, reducing its density and psr values to 3.75 g/m2
and 0.9375 g/sec respectively. At this point, we have
removed 2 + 2.25 + 3 + 1.125 or 8.375 kg of sand (cumula-
tive pos = 54.03%) and we have expended (80 + 120 + 240
+ 120) sec x 0.5 m/s x 5 sweepers or 1400 meters of effort.
Table 13 and Figure 27 apply.

REGIONAL VALUES AFTER SWEEPING R4 & R2 ONCE EACH

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 5 1.25 0 0 0
R2 0.25 10 2.50 0 0 0
R3 0.25 7.5 1.875 120 300 2.25
R4 0.25 10 2.50 80 200 2.00
Totals 200 500 4.25

Table 11

REGIONAL VALUES AFTER SWEEPING R4 TWICE, R2 & R3 ONCE EACH

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 5 1.25 0 0 0
R2 0.25 5 1.25 160 400 2.00
R3 0.25 7.5 1.875 120 300 2.25
R4 0.25 5 1.25 160 400 3.00
Totals 440 1100 7.25

Table 12

Figure 25
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Figure 26
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The honors for having the highest psr value are now
shared among R1, R3, and R4. However, we have only 100
meters of effort left. That is just enough to sweep one cell
on the probability map one time at a coverage of 0.5. Any
of the 12 cells that still contain 3.23% of the original 15.5
kg of sand will do. Each contains 0.5 kg of sand. We choose
to sweep the middle cell (8) for reasons that will become
apparent later. Sweeping this cell with our remaining effort
will remove 0.25 kg of sand, bringing the total amount of
sand removed up to 8.625 kg for a cumulative overall pos
of 55.65%. Figure 28 is the final probability map.

Examining  the  Results
The plan just described has some interesting characteris-

tics. If the sweepers moved from region to region exactly 
as described (and we do not count transit times against the 50
available sweeper-minutes), then the amount of sand
removed at any point in time during the process would be the
maximum possible amount that could have been removed up
to that point. Therefore, this is a uniformly optimal sweep-
ing plan. Note that the order in which the regions were swept
to achieve uniform optimality was neither initially nor intu-
itively obvious, even though this is a relatively simple prob-
lem. In addition to having regions with differing sizes and
densities, we could have complicated the problem further
by varying the effective sweep widths and their correspond-
ing sweeping speeds from one region to another as well (and
we will, shortly). Also note that one region was not swept at
all even though it contained nearly one-fifth of the total
amount of sand.

Analogies  with  Searching
We should pause and consider how the floor-sweeping

experiments we have just completed relate to searching.
Recall that we are using sand on the floor as an analogy for
probability. Therefore, searching an area may be thought of
as sweeping up probability. The amount of probability swept
up is the probability of success (POS). The amount of sand
left behind is analogous to the updated (post-search) proba-
bility of containment (POC). Therefore, 

[18] POCnew = POCold – POS,

where POCold is the POC immediately prior to the last
search and the POS is the value obtained from the last search.
Equation [18] is exactly mathematically equivalent to the
better-known formula,

[19] POCnew = (1 – POD) x POCold 

Expanding the expression on the right of the equals sign
and substituting from Equation [14] easily proves this asser-
tion. The total amount of sand swept up by all sweeping done
to date is analogous to the total amount of probability swept
up by all searching done to date. The latter is called the
cumulative overall probability of success. Just as the goal in
our floor-sweeping experiments was to sweep up sand at
the greatest possible rate, the goal of the search planner is to
maximize the increase in the cumulative overall probability
of success by “sweeping up” probability the greatest possible

REGIONAL VALUES AFTER SWEEPING R4 & R3 TWICE, R2 ONCE

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 5 1.25 0 0 0
R2 0.25 5 1.25 160 400 2.000
R3 0.25 3.75 0.9375 240 600 3.375
R4 0.25 5 1.25 160 400 3.000
Totals 560 1400 8.375

Table 13

Figure 27

1 2 3 4 5
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3.23% 3.23% 3.23% 2.42% 3.23%

11 12 13 14 15
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Figure 28
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profile of broom B4 due to its computational complexity.
However, we will observe that B4’s performance profile is
probably much more typical of actual SAR detection profiles
than those of the other brooms.

Although we carefully avoided the overlapping of swaths
during any single sweeping of a region, we should not jump
to the conclusion that the overlapping of detection profiles
from adjacent searcher tracks is to be avoided under all cir-
cumstances. This is another artifact of our broom’s physical
characteristics. With realistic detection profiles, some over-
lap is often required to achieve a practical approximation to
the optimal search plan.

Alternative  Strategies
Achieving uniform optimality (Strategy 1) during a single

operational period is hard to do as it is often impractical to
move searchers around in the manner just described for our
sweepers. However, we can still take advantage of the data
we have just computed to develop a nearly optimal, but more
practical, sweeping (search) plan. If we add up the total
amounts of time and effort expended in each region by all
five sweepers, we get the results shown in Table 14 below.

Strategy 2: We could assign two sweepers to R3 for the
full 10 minutes (600 seconds), allowing them to sweep R3
exactly twice at 0.5 m/sec with their 600 meters of effort. We
could also assign a third sweeper to R2 for the full 10 min-
utes (300 meters of effort), allowing him to sweep three of
that region’s four cells exactly once. Finally, we could assign
the other two sweepers to R4 for 6 minutes and 40 seconds
(400 seconds, 400 meters), allowing them to sweep it exactly
twice. For the remaining 3 minutes and 20 seconds (200 sec-
onds, 200 meters), these two sweepers would be assigned to
the remaining unswept cell in R3 which they would be able
to sweep exactly twice. This plan significantly reduces the
need to move sweepers from one region to another as com-
pared to the previous plan. It is also a T-optimal sweeping
plan because it would remove the same total of 8.625 kg of
sand in the allotted ten minutes. However, in the early stages,
it would not remove sand as quickly as the uniformly optimal
sweeping plan did.

Strategy 3: If we are not required to recognize regional
boundaries for the purpose of sweeping the floor, we can
develop another T-optimal plan that requires no inconve-
nient movements of sweepers from place to place. Going
back to our initial “probability map,” Figure 23, we could

rate. To do this, the search planner needs to know the prob-
able success rates (PSR) in the different regions. The prob-
able success rate (PSR) is exactly analogous to the
productive sweeping rate (psr) used above. The probable
success rate is computed by,

[20] PSR = (Effective Search (or Sweep) Rate) x Pden,

where Pden is defined as the amount of probability per unit
area in a region or,

[21] Pden = POC,____
A

where A is the area of the region. We may re-write Equation
[20] as

[22] PSR = W x v x Pden,

provided we are careful to remember that the effective sweep
width, W, and search speed, v, come as together as a single
package. (As a practical matter, small changes in v will not
usually affect the value of W seriously.) PSR has units of
probability (of success) per unit time.

Artificial  “Features”  of  the  Experiments
With the exception of the last 100 meters of effort, the

optimal search proceeded by sweeping an entire region
exactly once at a coverage of 0.5 before proceeding to the
next region in the sequence. This is an artifact of our broom’s
performance profile (B2 is uniformly 50% effective for a
width of one meter) and our method of sweeping (straight
parallel tracks spaced exactly one meter apart). These phys-
ical features along with the dimensions of our regions meant
that each time we started sweeping a region, we could keep
the brooms operating at peak productivity until we had fin-
ished sweeping it one (more) time. Very few SAR situations
give rise to detection profiles that are so uniform and sharply
defined. Almost all detection profiles are at their highest
close to the searcher’s actual track and decline in some fash-
ion as distance from the searcher’s track increases.
Therefore, we must not jump to the conclusion that all
searching should be done at a coverage of 0.5. In fact, we can
quickly show the fallacy of such a premature conclusion by
simply switching brooms. If we use broom B1, (100% effec-
tive across a width of 0.5 m), the optimal spacing is 0.5 m,
making the coverage 1.0. The optimal sweeping sequence
becomes R4, R3, R2 and R1. In ten minutes, we will be able
to sweep R4 once (160 sec, 4 kg), R2 once (240 sec, 4.5 kg)
and 2.5 cells in R2 in the remaining time (200 sec, 2.5 kg) for
a total of 11.0 kg of sand. This represents 11/15.5 or about
71% of the sand initially present. Similarly, for broom B4
(25% effective across a width of two meters), the optimal
spacing is two meters, making the coverage 0.25. The opti-
mal sweeping sequence becomes R4, R4 & R3, R4 & R3
(again), R2, R4 & R3, R2, R4 & R3. The total amount of
sand removed will be about 7.877 kg or about 50.82% of
the amount initially present. We will not attempt to develop
a uniformly optimal allocation for the uneven performance

Region Effort Time
(m) (sweeper-sec)

R1 0 0
R2 500 1000
R3 600 1200
R4 400 800
Totals 1500 3000

Table 14
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assign two sweepers to cells 13, 14 and 15, two sweepers to
cells 8, 9 and 10, and one sweeper to cells 3, 4 and 5 for the
full 10 minutes in each case. We could have them sweep first
from right to left across all three of their assigned cells, then
back and forth until their efforts were uniformly spread over
their assigned cells. Cells 8, 9, 10, 13, 14 and 15 would all be
swept twice while cells 3, 4 and 5 would be swept once. We
would still get a total of 8.625 kg of sand in ten minutes and
the sweepers’ brooms would never need to leave the floor.

Now let us look at three other strategies that might 
have suggested themselves before we performed our exper-
iments above.

Strategy 4: One of these alternatives would be to sweep
the regions one time each in descending order of how much
sand each contained initially. The order of sweeping in this
case would be R3, R4, R2 and R1, if we allow density to be
the tiebreaker between R4 and R2. There happens to be
exactly enough effort available to carry out this strategy.
The end result would be removal of 7.75 kg of sand, or 50%
of that initially present.

Strategy 5: Another strategy that might come to mind
would be sweeping the regions once each in descending
order of density. The sweeping order in this case would be
R4, R3, R2 and R1. Again, 7.75 kg of sand, or 50% of that
initially present, would be removed. 

Strategy 6: Finally, since we have five sweepers and
each sweeper can sweep three cells exactly once in ten min-
utes, we could assign one sweeper to each “column” of three
cells in Figure 23.

Figure 29 graphs the results of our sweeping strategies,
showing what percentage of the sand initially present each
strategy sweeps up as a function of time as the sweepers pass
back and forth over their assigned cells. 

The upper curve, labeled “S1” for “Strategy 1,” shows the
results of applying the uniformly optimal sweeping plan. In
our simple example, Strategy 5 is also uniformly optimal
for the first six minutes. Strategy 4 catches up with S1 at
three minutes, twenty seconds and manages to stay with it
until six minutes have passed. Then both S4 and S5 become
sub-optimal and depart sharply from the optimal curve.
Strategies 2 and 3 do not catch up with S1 until five min-
utes have passed, but then they remain very close to the uni-
formly optimal curve for the remaining five minutes.
Interestingly, the first five strategies are all T-optimal when T
equals five minutes. Only the first three are T-optimal when
T is ten minutes, while the other three are all sub-optimal at
that point. Finally, the worst plan of all is clearly Strategy 6.
Strategy 6 is the one where the available effort is spread uni-
formly over the floor for the entire ten minutes and is never
concentrated anywhere. In other words, Strategy 6, if applied
to searching, would seek to obtain the same POD every-
where at once. This is rarely the best plan.

Again, the author must caution the reader against jumping
to conclusions. The excellent performance of Strategy 5 in 
the early stages does not imply searching regions in descend-
ing order of probability density is always a good way to start. 
In developing examples, the author has struggled mightily to
balance the competing demands of making them simple
enough to follow yet complex enough to reflect reality. 
It has not been easy and the author has not always been
entirely successful. In the next paragraph, we will complicate
matters enough to show why one should not jump to
“obvious” conclusions.

Figure 29
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A  More  Complex  Experiment
We will now move a step closer to simulating a search

situation with our floor sweeping analogy. Suppose we
return to our initial problem represented by Figures 22 and
23, and Table 8. However, suppose that one morning when
we enter the gym to set up our experiments, we find the floor
is being refurbished. It is no longer uniformly smooth every-
where but has varying degrees of roughness. This forces us
to perform some additional experiments, like those of Part
I, to determine new effective sweep width and sweeping
speed values for the new conditions. We conduct our exper-
iments using broom B2 and find that although it remains uni-
formly effective across its one-meter width, the level of that
effectiveness (i.e., the effective sweep width) varies with the
roughness of the floor. We also find that eventually the
roughness of the floor also impacts the speed at which the
sweepers move. The results of the experiments are shown
in Table 15 below.

Apparently region R1 is still in its original condition for
our purposes since neither the effective sweep width nor the
sweeping speed have changed. In R2, the sweep width suf-
fers somewhat, but not the speed. Both R3 and R4 suffer
increasingly lowered sweep widths and speeds. Using our
new effective sweep rate values to compute new productive
sweeping rates for sweepers using a B2-type of broom, we
get the results shown in Table 16.

One thing is abundantly clear: Five sweepers will not be
able to sweep up nearly as much sand in ten minutes as they
did before. We also see that the productive sweeping rate val-
ues no longer parallel the density values. Because we are
using the same brooms as before (all identical to B2), we will
still want to use parallel tracks at a spacing (S) of one meter.
However, our effective coverage values for each region will
now be different at this spacing thanks to the differing effec-

tive sweep widths. Using the shortcut formula for coverage
that is valid for parallel sweeps of rectangular areas,

[23] C = W ,
S

where C is the coverage, W is the sweep width and S is the
track spacing, we find we will be using coverages of 0.5 for
R1, 0.4 for R2, 0.3 for R3 and 0.2 for R4. From Part II of
this series, we recall that at these low coverages, the per-
centage of remaining sand swept up by B2 at each sweep-
ing will equal the coverage. We begin with sweeping R2
one time. It takes 160 seconds for our five sweepers work-
ing together to “cover” R2 once at 0.5 m/sec. Having done
so, they have removed 40% of the 4 kg of sand initially pre-
sent or 1.6 kg. This leaves 2.4 kg behind in R2. Table 17
summarizes the situation following this sweeping.

Sweeping R3 one time at the reduced speed of 0.4 m/sec
requires 150 seconds and a total expended effort of 300 m.
Note that while the efforts required to sweep the regions does
not change from our previous experiments, the times
required to expend those efforts when sweeping speeds have
been reduced must increase accordingly. We sweep up 30%
of the 4.5 kg of sand initially present in R2, or 1.35 kg. This
leaves 3.15 kg behind. Table 18 summarizes the situation fol-
lowing the sweeping of R3.

With more than half of our time used up, we have swept
up less than 3 kg of sand. Since R3 still has the highest pro-
ductive sweeping rate, we sweep it again. This time, we get
30% of the remaining 3.15 kg of sand or 0.945 kg. The
results are summarized in Table 19.

We have now used 460 seconds of our original 600 sec-
onds (ten minutes) of sweeper availability, leaving 140 sec-
onds. The next region we want to sweep is R1 since it has the
highest psr value. At 0.5 m/sec, our five sweepers can sweep
3.5 cells out of the six in R1, removing 50% of the sand pre-
sent in the swept area. The amount of sand contained in 3.5
cells of R1 is 3.5 x 0.5 kg/cell or 1.75 kg and 50% of this
value is 0.875 kg. Table 20 summarizes the results after 10
minutes of uniformly optimal sweeping. Density and psr val-
ues for R1 are given for both the swept and unswept por-
tions.

Note that even with a uniformly optimal plan, we have
managed to sweep up only 4.77/15.5 or 30.77% of the sand
initially present. Figure 30 shows how the final “probability
map” would look if the 3.5 cells in R1 chosen for sweeping
were 2, 7, 12 and one-half of 11.

Region Effective Sweep Sweeping Speed Effective Sweep
Width (m) (m/sec) Rate (m2/sec)

R1 0.5 0.50 0.25
R2 0.4 0.50 0.20
R3 0.3 0.40 0.12
R4 0.2 0.25 0.05

Table 15

REGIONAL VALUES BEFORE ANY SWEEPING

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 5 1.25 0 0 0
R2 0.20 10 2.00 0 0 0
R3 0.12 15 1.80 0 0 0
R4 0.05 20 1.00 0 0 0

Table 16
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REGIONAL VALUES AFTER SWEEPING R2 ONCE

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 5 1.25 0 0 0
R2 0.20 6 1.20 160 400 1.6
R3 0.12 15 1.80 0 0 0
R4 0.05 20 1.00 0 0 0
Totals 160 400 1.6

Table 17

REGIONAL VALUES AFTER SWEEPING R2 & R3 ONCE EACH

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 5 1.25 0 0 0
R2 0.20 6 1.20 160 400 1.60
R3 0.12 10.5 1.26 150 300 1.35
R4 0.05 20 1.00 0 0 0
Totals 310 700 2.95

Table 18

REGIONAL VALUES AFTER SWEEPING R2 ONCE, R3 TWICE

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 5 1.25 0 0 0
R2 0.20 6 1.20 160 400 1.600
R3 0.12 7.35 0.882 300 600 2.295
R4 0.05 20 1.00 0 0 0
Totals 460 1000 3.895

Table 19

REGIONAL VALUES AFTER SWEEPING R2 & R1 ONCE EACH, R3 TWICE

Expended To Date
Region Effective Sweep Rate Density Productive Sweeping Rate (psr) Time Effort Amount of Sand Swept Up

(m2/sec) (g/m2) (g/sec) (sec) (m) To Date (kg)
R1 0.25 2.5 & 5 0.625 & 1.25 140 350 0.875
R2 0.20 6 1.20 160 400 1.600
R3 0.12 7.35 0.882 300 600 2.295
R4 0.05 20 1.00 0 0 0
Totals 600 1350 4.770

Table 20
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Note also that the optimal plan for this problem placed
no effort at all in the region having the highest density (R4)
whereas the optimal plan for the previous problem ignored
the region with the lowest density (R1).

Examining  Alternative  Strategies
We will not take time to analyze all the different strategies

examined above, but it will be instructive to look briefly at
the three “obvious” alternatives; namely Strategies 4, 5 and
6. Recall that in Strategy 4, regions are swept in order of
decreasing percentages of containment (poc) or, equiva-
lently, decreasing amounts of sand. In Strategy 5, regions are
swept in order of decreasing densities. In Strategy 6, one
searcher is assigned to each “column” of three cells on the
“probability map” and sweeps those “columns’ for the entire
ten minutes, starting at the “bottom” and moving “upward”
on the first leg. We will not belabor the reader with the nec-

essary arithmetic. We will simply show the graph of the
results as Figure 31.

Figure 31 makes it quite clear that none of the more sim-
plistic strategies work very well for the more complex prob-
lem we have just examined. This time, sweeping the regions
in descending order of density (Strategy S5) was the worst
thing to do in the early stages. However, the results of
Strategy S6 are similar to those of the previous experiments
in that apportioning the resources, i. e. the sweepers, evenly
over the entire area again turned out to be the worst strategy
at the end of ten minutes time. Note that a uniform distribu-
tion of resources over the floor’s area does not produce a uni-
form distribution of effort this time, nor does it cause a
uniform percentage of dirt (pod) to be swept up everywhere.
In fact, Strategy S6 has left some portions of the floor
unswept this time because three of our five sweepers could
not complete their assigned “columns” of three cells each in
the allotted time due to the speed reductions in regions R3
and R4.

Assessing  the  Costs  of  Sub-Optimal  Planning
One may think that the maximum difference between the

optimal pos value of 19% (2.95 kg of sand) and the 14%
(2.15 kg) or 15% (2.32 kg) of the other strategies at 5 min-
utes, 10 seconds in Figure 31 is small. However, the per-
spective changes when one considers the additional time
and/or effort required to obtain the optimal pos values. For
example, it will take the same five sweepers 6 minutes, 30
seconds to reach the 19% mark based on the next best strat-
egy of the three alternatives considered. That’s nearly 26%
more time to get the same result. In a SAR mission, adding
that much time to reach an early POS goal could be serious.
Alternatively, shaving 20% or so off the time required to
achieve a 19% cumulative probability of success by making

Figure 31

Figure 30
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more efficient use of the available resources could contribute
substantially to increasing the number of successful mis-
sions. Another way to view the issue is to consider how
much more effort would be required to achieve the optimal
result when using sub-optimal strategies. We would have to
increase our available effort by about 26%. Roughly speak-
ing, this means we need 26% more sweeper-minutes to make
the sub-optimal strategies produce results as good as the uni-
formly optimal plan in the first 5 minutes. That is a substan-
tial increase. (Of course, if we had the additional effort, we
would want to set a new optimal POS target.) The point is
that we can pay a significant price when search plans are
sub-optimal.

The  Charnes-Cooper  Algorithm
One feature of both the above optimal effort allocation

problems is particularly worth noting. As optimal sweeping
progressed, the productive sweeping rates tended to become
more and more nearly the same everywhere as sand was
removed. In fact, an optimal effort allocation strategy does
seek to “level the playing field,” as it were. In other words,
the general idea is to search the region with the highest prob-
able success rate (PSR) until enough probability is swept
up to make the PSR there equal to the second highest PSR
in the list. Then both regions are searched together so their
PSR values are kept equal to one another as they decrease at
the same rate to the PSR value of the third highest value in
the list. This process continues until as many regional PSR
values as possible are the same. Any remaining effort is then
spread over these regions in a fashion that keeps the PSR val-
ues equal to one another as they all decrease together toward
the next level. Note that the distribution of effort required to
keep PSR values dropping at equal rates everywhere is not
uniform. We must still compute an appropriate coverage and
corresponding level of effort for each region using the W, v,
and Pden values appropriate to that region and the resources
available to search it.

Note:  In the examples given above, physical constraints
and the method of sweeping i.e., using brooms one meter in
width moving along perfectly straight, parallel tracks one
meter apart, forced us to push psr values down below the
next highest value before moving on to the next region. We
could not move on until completing the current region
because if we did, we would leave some portion of the cur-
rent region behind that still had high psr and move to an area
with a lower psr. Again, the need to use simple, easy-to-visu-
alize examples prevents us from having an exact analogy
with the mathematical principles involved.

In 1958, A. Charnes and W. W. Cooper developed an
algorithm for computing the optimal distribution of effort for
situations where the probability density distribution was
known and the exponential detection function applied. Stone
[6] describes an adaptation of this algorithm in some detail.
Conceptually, the algorithm works as described above, i.e., it
“levels the playing field” in terms of probable success rate.
However, there is a good deal of mathematical detail needed
to make the concept work. That detail involves every equa-
tion presented in this series of articles as well as others. The
algorithm is really practical only if a computer is available on

which it may be programmed and run. The good news is
that the algorithm is not too difficult to program and it is very
efficient. The bad news is that it computes what is known as
an unconstrained optimization. It makes no allowances for
the real-world limitations on how resources may be
deployed. If the algorithm computes that the effort repre-
sented by one searcher searching for one hour is needed in an
area of 160 acres, then it will assume, for computational
purposes, that the searcher can somehow uniformly “search”
the entire 160 acres in that hour, albeit with a very low cov-
erage and POD. There are other assumptions that are equally
unrealistic. However, if the algorithm’s intermediate iterative
workings are not taken too literally, its final results can be
quite useful in a practical sense. The algorithm can even be
modified to accept “effort” defined in the more commonly
used terms of searcher- or resource-hours instead of the clas-
sical search theory definition using distance. If the algo-
rithm is run for the total amount of available “effort” (and the
sweep widths, search speeds, probabilities of containment,
areas, etc., have been entered for all the regions) the search
planner can see how much of that “effort” (e.g., how many
searcher-hours) were accumulated in each region. The
results of such computations will provide a very useful guide
to the search planner regarding where he should place the
available resources during the next search cycle. In other
words, the output of the Charnes-Cooper algorithm may be
used in the same way we used the final values in Table 14
to develop alternative Strategies 2 and 3 for our first set of
experiments.

Lessons
We have covered a great deal of ground in these articles.

Some of the things we have learned along the way are:

• The goal of search planning is to maximize the cumula-
tive overall probability of success and minimize the time 
required to achieve it within the constraints of the avail-
able resources.

• The probability of detection (POD) is an estimate of the
chances that the object of the search would have been
detected if it had been in the searched area during the
search.

• The concept of effective search (or sweep) width as a quan-
titative measure of “detectability” is the key to objective,
reliable and consistent POD estimates. Without this con-
cept and supporting data from rigorous scientific field
experiments, POD estimates must necessarily be regarded
as highly subjective “guess-timates.”

• The concept of effective search (or sweep) width lies at the
very core of search theory and is the key to planning effec-
tive, efficient searches of areas and evaluating search
results.

• In search theory, effort is defined as the distance a searcher
travels while searching within a defined area.

• The concept of effective coverage relates the effective
sweep width and the amount of effort expended in an area
to the size of that area.
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• POD is a function of coverage, as depicted in Figure 32.
The graph shown there is that of the exponential detection
function for coverages ranging from zero to 3.0.

• There is no theoretical basis for the claim that two succes-
sive low-coverage (i.e., low POD) searches of a region will
produce a higher cumulative POD for the same effort as a
single higher-coverage (i.e. higher POD) search would. 
In fact, search theory suggests the opposite effect is far
more likely.

• The probability that a region, segment, or other geographi-
cally defined area contains the search object is called the
probability of containment (POC) or, equivalently, the
probability of area (POA).

• Initial POC values are estimated subjectively by scenario
analysis and consensus. For a particular scenario, POC val-
ues for sub-divisions of the possibility area may be esti-
mated directly or by assignment of proportional assessment
values that are then normalized to produce probabilities of
containment. However, simplistic schemes that only assign
ranks and thus do not keep the values in the correct pro-
portions to one another can lead to POCs that are inconsis-
tent with the evaluators’ assessments of the available
information. Such schemes should be avoided. 

• When multiple scenarios are under consideration, they may
be assigned different “weights” to reflect their relative like-
lihoods of representing the true situation.

• The probability density (Pden) of a region, segment, or
other geographically defined area is the ratio of its current
POC to its area.

• A probability map is a regular grid of cells where each cell
is labeled with the amount of probability it contains. A
probability map is constructed by laying a regular grid over
a map labeled with the results of the scenario analysis and
consensus processes. POC values for the cells are then
computed from the regional POC and Pden values estab-
lished by scenario analysis and consensus. A cell’s POC is
based on the product of its area and the probability density
of the region it lies within. If the cell spans more than one
region, then the areas of the fractions of the cell lying in
each region are multiplied by the respective regional den-
sities and the results added together to get the cell’s POC.
Because all cells are the same size, the Pdens of the cells
are proportional to their POCs. Therefore, a probability
map shows at a glance both the containment probabilities
and where the probability densities are high and where they
are low. The probability map is a representation of the
search object’s location probability density distribution.

• Developing scenarios and their corresponding probability
density distributions, or probability maps, from evidence,
clues, behavior profiles, historical records, and any other
available information is not a simple task. Scenario analy-
sis is an essential part of the search planning process

Figure 32
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deserving more dedicated time, resources and attention
than it generally gets.

• The probability that a search of a region, segment, or other
geographically defined area will, or should, locate the
search object is called the probability of success (POS).
POS is a function of POD and POC—in fact, it is the prod-
uct of the two.

• Searching an area is tantamount to “sweeping up” or
“removing” probability from it. The amount removed is the
POS while the amount remaining is the new post-search
POC. The POD of the search determines both values.

• The cumulative overall probability of success is the sum
of all individual POS values achieved to date. It measures
the chances of having found the search object if it was any-
where within the possibility areas of the scenarios under
consideration. Achieving a high cumulative overall POS
value without locating the search object is an indication that
further searching based on the scenarios currently under
consideration is unlikely to be successful. It is also an indi-
cation that a thorough re-evaluation of all available data and
information is needed to determine whether key facts have
been overlooked, whether other plausible scenarios exist,
etc.

• The probable success rate (PSR) for a region, segment, or
other geographically defined area is an estimate of the rate
at which POS can be increased by searching there. PSR is
the product of the effective sweep width, the corresponding
search speed, and the area’s probability density (Pden).

• The optimal allocation of search resources is not a simple
task—in theory nor in practice. Simplistic guidelines about
placing most of the resources where the probability of con-
tainment is highest, or where the probability density is high-
est, are unreliable.

• In the most basic terms, the idea behind optimal effort allo-
cation is to put search resources into the region(s) where
probability can be swept up most quickly, moving them to
other regions when and as necessary to ensure they are
always searching where they can be the most productive.

• For large-scale searches involving significant amounts of
area and requiring more than a few hours to resolve
successfully, search theory, properly applied, can substan-
tially improve success rates in most jurisdictions.

A  Final  Word
In these articles, we have not developed a practical search

planning methodology based on search theory nor was it our
intent to do so. However, perhaps we have at least raised the
reader’s awareness of the potential benefits that development

of such a methodology would bring to SAR missions. A
project to produce a set of scientifically valid yet practical
search planning procedures would require a development
team whose collective talents and knowledge covered the
entire spectrum from the most mathematically esoteric
aspects of search theory to the most practical aspects of plan-
ning and conducting search operations. Such an undertak-
ing would also require significant amounts of time and
resources. Tasks would include: 

• Designing, developing and conducting sweep width exper-
iments in inland environments.

• Testing and evaluating different search tactics.

• Integrating material and knowledge from many diverse
areas of expertise into a clear, concise, coherent, practical,
and scientifically valid set of guidelines for planning
searches. 

However, it is to be hoped that we have provided a rarely-
seen scientific perspective on the nature of searching that
will help search planners think about and approach search
problems in new and improved ways even before these tasks
can begin.
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